The Impact of As-Built Surface Characteristics of Selective-Laser-Melted Ti-6Al-4V on Early Osteoblastic Response for Potential Dental Applications.

IF 5.2 3区 医学 Q1 ENGINEERING, BIOMEDICAL
Muhammad Hassan Razzaq, Olugbenga Ayeni, Selin Köklü, Kagan Berk, Muhammad Usama Zaheer, Tim Tjardts, Franz Faupel, Salih Veziroglu, Yogendra Kumar Mishra, Mehmet Fatih Aycan, O Cenk Aktas, Tayebeh Ameri, Sinan Sen
{"title":"The Impact of As-Built Surface Characteristics of Selective-Laser-Melted Ti-6Al-4V on Early Osteoblastic Response for Potential Dental Applications.","authors":"Muhammad Hassan Razzaq, Olugbenga Ayeni, Selin Köklü, Kagan Berk, Muhammad Usama Zaheer, Tim Tjardts, Franz Faupel, Salih Veziroglu, Yogendra Kumar Mishra, Mehmet Fatih Aycan, O Cenk Aktas, Tayebeh Ameri, Sinan Sen","doi":"10.3390/jfb16070230","DOIUrl":null,"url":null,"abstract":"<p><p>This study investigates the potential of Selective Laser Melting (SLM) to tailor the surface characteristics of Ti6Al4V directly during fabrication, eliminating the need for post-processing treatments potentially for dental implants. By adjusting the Volumetric Energy Density (VED) through controlled variations in the laser scanning speed, we achieved customized surface textures at both the micro- and nanoscale levels. SLM samples fabricated at moderate VED levels (50-100 W·mm<sup>3</sup>/s) exhibited optimized dual-scale surface roughness-a macro-roughness of up to 25.5-27.6 µm and micro-roughness of as low as 58.8-64.2 nm-resulting in significantly enhanced hydrophilicity, with water contact angles (WCAs) decreasing to ~62°, compared to ~80° on a standard grade 5 machined Ti6Al4V plate. The XPS analysis revealed that the surface oxygen content remains relatively stable at low VED values, with no significant increase. The surface topography plays a significant role in influencing the WCA, particularly when the VED values are low (below 200 W·mm<sup>3</sup>/s) during SLM, indicating the dominant effect of surface morphology over chemistry in these conditions. Biological assays using osteoblast-like MG-63 cells demonstrated that these as-built SLM surfaces supported a 1.5-fold-higher proliferation and improved cytoskeletal organization relative to the control, confirming the enhanced early cellular responses. These results highlight the capability of SLM to engineer bioactive implant surfaces through process-controlled morphology and chemistry, presenting a promising strategy for the next generation of dental implants suitable for immediate placement and osseointegration.</p>","PeriodicalId":15767,"journal":{"name":"Journal of Functional Biomaterials","volume":"16 7","pages":""},"PeriodicalIF":5.2000,"publicationDate":"2025-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Functional Biomaterials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/jfb16070230","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the potential of Selective Laser Melting (SLM) to tailor the surface characteristics of Ti6Al4V directly during fabrication, eliminating the need for post-processing treatments potentially for dental implants. By adjusting the Volumetric Energy Density (VED) through controlled variations in the laser scanning speed, we achieved customized surface textures at both the micro- and nanoscale levels. SLM samples fabricated at moderate VED levels (50-100 W·mm3/s) exhibited optimized dual-scale surface roughness-a macro-roughness of up to 25.5-27.6 µm and micro-roughness of as low as 58.8-64.2 nm-resulting in significantly enhanced hydrophilicity, with water contact angles (WCAs) decreasing to ~62°, compared to ~80° on a standard grade 5 machined Ti6Al4V plate. The XPS analysis revealed that the surface oxygen content remains relatively stable at low VED values, with no significant increase. The surface topography plays a significant role in influencing the WCA, particularly when the VED values are low (below 200 W·mm3/s) during SLM, indicating the dominant effect of surface morphology over chemistry in these conditions. Biological assays using osteoblast-like MG-63 cells demonstrated that these as-built SLM surfaces supported a 1.5-fold-higher proliferation and improved cytoskeletal organization relative to the control, confirming the enhanced early cellular responses. These results highlight the capability of SLM to engineer bioactive implant surfaces through process-controlled morphology and chemistry, presenting a promising strategy for the next generation of dental implants suitable for immediate placement and osseointegration.

选择性激光熔化Ti-6Al-4V的表面特性对早期成骨细胞反应的影响及其在牙科领域的潜在应用。
本研究探讨了选择性激光熔化(SLM)在制造过程中直接定制Ti6Al4V表面特性的潜力,从而消除了牙科种植体可能需要的后处理处理。通过控制激光扫描速度的变化来调节体积能量密度(VED),我们在微观和纳米尺度上实现了定制的表面纹理。在中等VED水平(50-100 W·mm3/s)下制备的SLM样品显示出优化的双尺度表面粗糙度-宏观粗糙度高达25.5-27.6 μ m,微观粗糙度低至58.8-64.2 nm-从而显着增强了亲水性,水接触角(WCAs)降低到~62°,而标准5级加工Ti6Al4V板的~80°。XPS分析表明,在低VED值下,表面氧含量保持相对稳定,没有明显增加。表面形貌对WCA有重要影响,特别是在SLM过程中,当VED值较低(低于200 W·mm3/s)时,表明在这些条件下,表面形貌的主导作用大于化学作用。使用成骨细胞样MG-63细胞进行的生物试验表明,与对照相比,这些构建的SLM表面支持1.5倍的增殖和改善的细胞骨架组织,证实了增强的早期细胞反应。这些结果强调了SLM通过过程控制形态和化学来设计生物活性种植体表面的能力,为适合立即放置和骨整合的下一代牙种植体提供了有前途的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Functional Biomaterials
Journal of Functional Biomaterials Engineering-Biomedical Engineering
CiteScore
4.60
自引率
4.20%
发文量
226
审稿时长
11 weeks
期刊介绍: Journal of Functional Biomaterials (JFB, ISSN 2079-4983) is an international and interdisciplinary scientific journal that publishes regular research papers (articles), reviews and short communications about applications of materials for biomedical use. JFB covers subjects from chemistry, pharmacy, biology, physics over to engineering. The journal focuses on the preparation, performance and use of functional biomaterials in biomedical devices and their behaviour in physiological environments. Our aim is to encourage scientists to publish their results in as much detail as possible. Therefore, there is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Several topical special issues will be published. Scope: adhesion, adsorption, biocompatibility, biohybrid materials, bio-inert materials, biomaterials, biomedical devices, biomimetic materials, bone repair, cardiovascular devices, ceramics, composite materials, dental implants, dental materials, drug delivery systems, functional biopolymers, glasses, hyper branched polymers, molecularly imprinted polymers (MIPs), nanomedicine, nanoparticles, nanotechnology, natural materials, self-assembly smart materials, stimuli responsive materials, surface modification, tissue devices, tissue engineering, tissue-derived materials, urological devices.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信