Yunfei Liao, Touhid Islam, Rooksana Noorai, Jared Streich, Christopher Saski, Lee W Cohnstaedt, Elizabeth A Cooper
{"title":"Climate Adaptation and Genetic Differentiation in the Mosquito Species Culex tarsalis.","authors":"Yunfei Liao, Touhid Islam, Rooksana Noorai, Jared Streich, Christopher Saski, Lee W Cohnstaedt, Elizabeth A Cooper","doi":"10.1093/gbe/evaf143","DOIUrl":null,"url":null,"abstract":"<p><p>The increasing prevalence of vector-borne diseases around the world highlights the pressing need for an in-depth exploration of the genetic and environmental factors that shape the adaptability and widespread distribution of mosquito populations. This research focuses on Culex tarsalis, a principal vector for various viral diseases including West Nile Virus (WNV). Through the development of a new reference genome and the examination of Restriction-Site Associated DNA sequencing (RAD-seq) data from over 300 individuals and 28 locations, we demonstrate that variables such as temperature, evaporation rates, and the density of vegetation significantly impact the genetic makeup of Cx. tarsalis populations. Among the alleles most strongly associated with environmental factors is a nonsynonymous mutation in a key gene related to circadian rhythms. These results offer new insights into the mechanisms of spread and adaptation in a key North American vector species, which is poised to become a growing health threat to both humans and animals in the face of ongoing climate change.</p>","PeriodicalId":12779,"journal":{"name":"Genome Biology and Evolution","volume":" ","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genome Biology and Evolution","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/gbe/evaf143","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
The increasing prevalence of vector-borne diseases around the world highlights the pressing need for an in-depth exploration of the genetic and environmental factors that shape the adaptability and widespread distribution of mosquito populations. This research focuses on Culex tarsalis, a principal vector for various viral diseases including West Nile Virus (WNV). Through the development of a new reference genome and the examination of Restriction-Site Associated DNA sequencing (RAD-seq) data from over 300 individuals and 28 locations, we demonstrate that variables such as temperature, evaporation rates, and the density of vegetation significantly impact the genetic makeup of Cx. tarsalis populations. Among the alleles most strongly associated with environmental factors is a nonsynonymous mutation in a key gene related to circadian rhythms. These results offer new insights into the mechanisms of spread and adaptation in a key North American vector species, which is poised to become a growing health threat to both humans and animals in the face of ongoing climate change.
期刊介绍:
About the journal
Genome Biology and Evolution (GBE) publishes leading original research at the interface between evolutionary biology and genomics. Papers considered for publication report novel evolutionary findings that concern natural genome diversity, population genomics, the structure, function, organisation and expression of genomes, comparative genomics, proteomics, and environmental genomic interactions. Major evolutionary insights from the fields of computational biology, structural biology, developmental biology, and cell biology are also considered, as are theoretical advances in the field of genome evolution. GBE’s scope embraces genome-wide evolutionary investigations at all taxonomic levels and for all forms of life — within populations or across domains. Its aims are to further the understanding of genomes in their evolutionary context and further the understanding of evolution from a genome-wide perspective.