Three-Dimensional Printing and Supercritical Technologies for the Fabrication of Intricately Structured Aerogels Derived from the Alginate-Chitosan Polyelectrolyte Complex.
Natalia Menshutina, Andrey Abramov, Eldar Golubev, Pavel Tsygankov
{"title":"Three-Dimensional Printing and Supercritical Technologies for the Fabrication of Intricately Structured Aerogels Derived from the Alginate-Chitosan Polyelectrolyte Complex.","authors":"Natalia Menshutina, Andrey Abramov, Eldar Golubev, Pavel Tsygankov","doi":"10.3390/gels11070477","DOIUrl":null,"url":null,"abstract":"<p><p>Patient-specific scaffolds for tissue and organ regeneration are still limited by the difficulty of simultaneously shaping complex geometries, preserving hierarchical porosity, and guaranteeing sterility. Additive technologies represent a promising approach for addressing problems in tissue engineering, with the potential to develop personalized matrices for the growth of tissue and organ cells. The utilization of supercritical technologies, encompassing the processes of drying and sterilization within a supercritical fluid environment, has demonstrated significant opportunities for obtaining highly effective matrices for cell growth based on biocompatible materials. We present a comprehensive methodology for fabricating intricately structured, sterile aerogels based on alginate-chitosan polyelectrolyte complexes. The target three-dimensional macrostructure is achieved through (i) direct ink writing or (ii) heterophase printing, enabling the deposition of inks with diverse rheological profiles (viscosities ranging from 0.8 to 2500 Pa·s). A coupled supercritical carbon dioxide drying-sterilization regimen at 120 bar and 40 °C is employed to preserve the highly porous architecture of the printed constructs. The resulting aerogels exhibit 96 ± 2% porosity, a BET surface area of 108-238 m<sup>2</sup> g<sup>-1</sup>, and complete sterility. The proposed integration of 3D printing and supercritical processing yields sterile, intricately structured aerogels with substantial potential for the fabrication of patient-specific scaffolds for tissue and organ regeneration.</p>","PeriodicalId":12506,"journal":{"name":"Gels","volume":"11 7","pages":""},"PeriodicalIF":5.3000,"publicationDate":"2025-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12294165/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Gels","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.3390/gels11070477","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Patient-specific scaffolds for tissue and organ regeneration are still limited by the difficulty of simultaneously shaping complex geometries, preserving hierarchical porosity, and guaranteeing sterility. Additive technologies represent a promising approach for addressing problems in tissue engineering, with the potential to develop personalized matrices for the growth of tissue and organ cells. The utilization of supercritical technologies, encompassing the processes of drying and sterilization within a supercritical fluid environment, has demonstrated significant opportunities for obtaining highly effective matrices for cell growth based on biocompatible materials. We present a comprehensive methodology for fabricating intricately structured, sterile aerogels based on alginate-chitosan polyelectrolyte complexes. The target three-dimensional macrostructure is achieved through (i) direct ink writing or (ii) heterophase printing, enabling the deposition of inks with diverse rheological profiles (viscosities ranging from 0.8 to 2500 Pa·s). A coupled supercritical carbon dioxide drying-sterilization regimen at 120 bar and 40 °C is employed to preserve the highly porous architecture of the printed constructs. The resulting aerogels exhibit 96 ± 2% porosity, a BET surface area of 108-238 m2 g-1, and complete sterility. The proposed integration of 3D printing and supercritical processing yields sterile, intricately structured aerogels with substantial potential for the fabrication of patient-specific scaffolds for tissue and organ regeneration.
期刊介绍:
The journal Gels (ISSN 2310-2861) is an international, open access journal on physical (supramolecular) and chemical gel-based materials. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. Therefore, there is no restriction on the maximum length of the papers, and full experimental details must be provided so that the results can be reproduced. Short communications, full research papers and review papers are accepted formats for the preparation of the manuscripts.
Gels aims to serve as a reference journal with a focus on gel materials for researchers working in both academia and industry. Therefore, papers demonstrating practical applications of these materials are particularly welcome. Occasionally, invited contributions (i.e., original research and review articles) on emerging issues and high-tech applications of gels are published as special issues.