{"title":"Analytical computation for segmentation and classification of lumbar vertebral fractures.","authors":"Roseline Nyange, Hemachandran Kannan, Channabasava Chola, Saurabh Singh, Jaejeung Kim, Anil Audumbar Pise","doi":"10.3389/fncom.2025.1536441","DOIUrl":null,"url":null,"abstract":"<p><p>Spinal health forms the cornerstone of the overall human body functionality with the lumbar spine playing a critical role and prone to various types of injuries due to inflammation and diseases, including lumbar vertebral fractures. This paper proposes automated method for segmentation of lumbar vertebral body (VB) using image processing techniques such as shape features and morphological operations. This entails an initial phase of image preprocessing, followed by detection and localizing of vertebral regions. Subsequently, vertebral are segmented and labeled, with each classified into normal or fractured using classification techniques, k-nearest neighbors (KNN) and support vector machines (SVM). The methodology leverages unique vertebral characteristics like gray scales, shape features, and textural elements through a range of machine learning methods. The approach is assessed and validated on a clinical spine dataset dice score used for segmentation, achieving an average accuracy rate of 95%, and for classification, achieving average accuracy of 97.01%.</p>","PeriodicalId":12363,"journal":{"name":"Frontiers in Computational Neuroscience","volume":"19 ","pages":"1536441"},"PeriodicalIF":2.3000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12287019/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computational Neuroscience","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3389/fncom.2025.1536441","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Spinal health forms the cornerstone of the overall human body functionality with the lumbar spine playing a critical role and prone to various types of injuries due to inflammation and diseases, including lumbar vertebral fractures. This paper proposes automated method for segmentation of lumbar vertebral body (VB) using image processing techniques such as shape features and morphological operations. This entails an initial phase of image preprocessing, followed by detection and localizing of vertebral regions. Subsequently, vertebral are segmented and labeled, with each classified into normal or fractured using classification techniques, k-nearest neighbors (KNN) and support vector machines (SVM). The methodology leverages unique vertebral characteristics like gray scales, shape features, and textural elements through a range of machine learning methods. The approach is assessed and validated on a clinical spine dataset dice score used for segmentation, achieving an average accuracy rate of 95%, and for classification, achieving average accuracy of 97.01%.
期刊介绍:
Frontiers in Computational Neuroscience is a first-tier electronic journal devoted to promoting theoretical modeling of brain function and fostering interdisciplinary interactions between theoretical and experimental neuroscience. Progress in understanding the amazing capabilities of the brain is still limited, and we believe that it will only come with deep theoretical thinking and mutually stimulating cooperation between different disciplines and approaches. We therefore invite original contributions on a wide range of topics that present the fruits of such cooperation, or provide stimuli for future alliances. We aim to provide an interactive forum for cutting-edge theoretical studies of the nervous system, and for promulgating the best theoretical research to the broader neuroscience community. Models of all styles and at all levels are welcome, from biophysically motivated realistic simulations of neurons and synapses to high-level abstract models of inference and decision making. While the journal is primarily focused on theoretically based and driven research, we welcome experimental studies that validate and test theoretical conclusions.
Also: comp neuro