{"title":"19S proteasome loss regulates mitotic spindle assembly through a ubiquitin-independent degradation mechanism.","authors":"Océane Marescal, Iain M Cheeseman","doi":"10.1016/j.celrep.2025.116041","DOIUrl":null,"url":null,"abstract":"<p><p>During regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in its 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis. Despite decreased ubiquitin-mediated protein degradation in PSMD knockouts, we find that the monopolar spindle phenotype is instead caused by the aberrant degradation of the kinesin motor protein KIF11. We show that KIF11 degradation occurs through the 20S proteasome in a ubiquitin-independent manner upon loss of 19S proteins and that the resulting alterations in spindle forces lead to the unique monopolar phenotype. Thus, the presence of the 19S particle ensures proper spindle formation by restraining ubiquitin-independent degradation.</p>","PeriodicalId":9798,"journal":{"name":"Cell reports","volume":"44 8","pages":"116041"},"PeriodicalIF":6.9000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell reports","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1016/j.celrep.2025.116041","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CELL BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
During regulated protein degradation, the 26S proteasome recognizes ubiquitinated substrates through its 19S particle and then degrades them in its 20S enzymatic core. Despite this close interdependency between proteasome subunits, we demonstrate that knockouts from different proteasome subcomplexes result in distinct cellular phenotypes. In particular, depletion of 19S PSMD lid proteins, but not that of other proteasome subunits, prevents bipolar spindle assembly during mitosis. Despite decreased ubiquitin-mediated protein degradation in PSMD knockouts, we find that the monopolar spindle phenotype is instead caused by the aberrant degradation of the kinesin motor protein KIF11. We show that KIF11 degradation occurs through the 20S proteasome in a ubiquitin-independent manner upon loss of 19S proteins and that the resulting alterations in spindle forces lead to the unique monopolar phenotype. Thus, the presence of the 19S particle ensures proper spindle formation by restraining ubiquitin-independent degradation.
期刊介绍:
Cell Reports publishes high-quality research across the life sciences and focuses on new biological insight as its primary criterion for publication. The journal offers three primary article types: Reports, which are shorter single-point articles, research articles, which are longer and provide deeper mechanistic insights, and resources, which highlight significant technical advances or major informational datasets that contribute to biological advances. Reviews covering recent literature in emerging and active fields are also accepted.
The Cell Reports Portfolio includes gold open-access journals that cover life, medical, and physical sciences, and its mission is to make cutting-edge research and methodologies available to a wide readership.
The journal's professional in-house editors work closely with authors, reviewers, and the scientific advisory board, which consists of current and future leaders in their respective fields. The advisory board guides the scope, content, and quality of the journal, but editorial decisions are independently made by the in-house scientific editors of Cell Reports.