{"title":"Organoid models in oncology: advancing precision cancer therapy and vaccine development.","authors":"Yuxuan Xiao, Yutao Li, Xilin Jing, Lin Weng, Xu Liu, Qingyun Liu, Kezhong Chen","doi":"10.20892/j.issn.2095-3941.2025.0127","DOIUrl":null,"url":null,"abstract":"<p><p>Organoids are three-dimensional stem cell-derived models that offer a more physiologically relevant representation of tumor biology compared to traditional two-dimensional cell cultures or animal models. Organoids preserve the complex tissue architecture and cellular diversity of human cancers, enabling more accurate predictions of tumor growth, metastasis, and drug responses. Integration with microfluidic platforms, such as organ-on-a-chip systems, further enhances the ability to model tumor-environment interactions in real-time. Organoids facilitate in-depth exploration of tumor heterogeneity, molecular mechanisms, and the development of personalized treatment strategies when coupled with multi-omics technologies. Organoids provide a platform for investigating tumor-immune cell interactions, which aid in the design and testing of immune-based therapies and vaccines. Taken together, these features position organoids as a transformative tool in advancing cancer research and precision medicine.</p>","PeriodicalId":9611,"journal":{"name":"Cancer Biology & Medicine","volume":" ","pages":""},"PeriodicalIF":5.6000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cancer Biology & Medicine","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.20892/j.issn.2095-3941.2025.0127","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Organoids are three-dimensional stem cell-derived models that offer a more physiologically relevant representation of tumor biology compared to traditional two-dimensional cell cultures or animal models. Organoids preserve the complex tissue architecture and cellular diversity of human cancers, enabling more accurate predictions of tumor growth, metastasis, and drug responses. Integration with microfluidic platforms, such as organ-on-a-chip systems, further enhances the ability to model tumor-environment interactions in real-time. Organoids facilitate in-depth exploration of tumor heterogeneity, molecular mechanisms, and the development of personalized treatment strategies when coupled with multi-omics technologies. Organoids provide a platform for investigating tumor-immune cell interactions, which aid in the design and testing of immune-based therapies and vaccines. Taken together, these features position organoids as a transformative tool in advancing cancer research and precision medicine.
期刊介绍:
Cancer Biology & Medicine (ISSN 2095-3941) is a peer-reviewed open-access journal of Chinese Anti-cancer Association (CACA), which is the leading professional society of oncology in China. The journal quarterly provides innovative and significant information on biological basis of cancer, cancer microenvironment, translational cancer research, and all aspects of clinical cancer research. The journal also publishes significant perspectives on indigenous cancer types in China.