{"title":"New way to isolate cultured cell exosomes.","authors":"İshak Afşin Kariper, Nilgün Okşak, Dilek Bahar","doi":"10.1116/6.0004479","DOIUrl":null,"url":null,"abstract":"<p><p>Exosomes are one of the extracellular vesicles that are secreted by almost all cell types and body fluids. Because they are nanosized (30-200 nm), they can be used as natural nanovesicles. Exosomes have recently been preferred for their low immunogenicity and toxicity features for cell-free therapy, nano-drug carriers, and regenerative medicine. Rapid and appropriate exosome isolation has become increasingly critical due to its extensive application area. In this study, we isolated the MCF-7 cell exosomes using a biological membrane that works for nanoparticle isolation. Our results showed that the number of exosomes was 2 × 106 particles per ml in the cell line media, with a peak size of 110 nm. The proposed technique has features such as simplifying the operative procedures, low cost, and high efficiency. In addition, this technique did not use high-cost reactants, and it was not time-consuming. Additionally, no further procedure was necessary, and the amount of hand manipulation was minimal.</p>","PeriodicalId":9053,"journal":{"name":"Biointerphases","volume":"20 4","pages":""},"PeriodicalIF":1.6000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biointerphases","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1116/6.0004479","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Exosomes are one of the extracellular vesicles that are secreted by almost all cell types and body fluids. Because they are nanosized (30-200 nm), they can be used as natural nanovesicles. Exosomes have recently been preferred for their low immunogenicity and toxicity features for cell-free therapy, nano-drug carriers, and regenerative medicine. Rapid and appropriate exosome isolation has become increasingly critical due to its extensive application area. In this study, we isolated the MCF-7 cell exosomes using a biological membrane that works for nanoparticle isolation. Our results showed that the number of exosomes was 2 × 106 particles per ml in the cell line media, with a peak size of 110 nm. The proposed technique has features such as simplifying the operative procedures, low cost, and high efficiency. In addition, this technique did not use high-cost reactants, and it was not time-consuming. Additionally, no further procedure was necessary, and the amount of hand manipulation was minimal.
期刊介绍:
Biointerphases emphasizes quantitative characterization of biomaterials and biological interfaces. As an interdisciplinary journal, a strong foundation of chemistry, physics, biology, engineering, theory, and/or modelling is incorporated into originated articles, reviews, and opinionated essays. In addition to regular submissions, the journal regularly features In Focus sections, targeted on specific topics and edited by experts in the field. Biointerphases is an international journal with excellence in scientific peer-review. Biointerphases is indexed in PubMed and the Science Citation Index (Clarivate Analytics). Accepted papers appear online immediately after proof processing and are uploaded to key citation sources daily. The journal is based on a mixed subscription and open-access model: Typically, authors can publish without any page charges but if the authors wish to publish open access, they can do so for a modest fee.
Topics include:
bio-surface modification
nano-bio interface
protein-surface interactions
cell-surface interactions
in vivo and in vitro systems
biofilms / biofouling
biosensors / biodiagnostics
bio on a chip
coatings
interface spectroscopy
biotribology / biorheology
molecular recognition
ambient diagnostic methods
interface modelling
adhesion phenomena.