{"title":"The Effects of Turbulent Biological Tissue on Adjustable Anomalous Vortex Laser Beam.","authors":"Yiqun Zhang, Wu Wang, Xiaokun Ding, Liyu Sun, Zhenyang Qian, Huilin Jiang, Yansong Song, Runwei Ding","doi":"10.3390/biomimetics10070461","DOIUrl":null,"url":null,"abstract":"<p><p>In this work, we present a new partially coherent adjustable anomalous vortex laser beam (PCAAVLB) and introduce it into turbulent biological tissue. The equation of such PCAAVLB in turbulent biological tissue is obtained. By numerical analysis, the evolution of the intensity of such PCAAVLB in turbulent biological tissue is analyzed. It is found that the PCAAVLB in biological tissue can lose its ring shape and become a Gaussian beam, and a PCAAVLB with smaller topological charge M or coherence length σ will evolve into a Gaussian profile faster. The PCAAVLB in turbulent biological tissue with a smaller small-length-scale factor l0 or larger fractal dimension D will evolve into a Gaussian profile faster and have a larger intensity as z increases. The results may have potential applications in sensing under biological tissue environments and laser imaging in biology.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070461","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we present a new partially coherent adjustable anomalous vortex laser beam (PCAAVLB) and introduce it into turbulent biological tissue. The equation of such PCAAVLB in turbulent biological tissue is obtained. By numerical analysis, the evolution of the intensity of such PCAAVLB in turbulent biological tissue is analyzed. It is found that the PCAAVLB in biological tissue can lose its ring shape and become a Gaussian beam, and a PCAAVLB with smaller topological charge M or coherence length σ will evolve into a Gaussian profile faster. The PCAAVLB in turbulent biological tissue with a smaller small-length-scale factor l0 or larger fractal dimension D will evolve into a Gaussian profile faster and have a larger intensity as z increases. The results may have potential applications in sensing under biological tissue environments and laser imaging in biology.