{"title":"Task-Related EEG as a Biomarker for Preclinical Alzheimer's Disease: An Explainable Deep Learning Approach.","authors":"Ziyang Li, Hong Wang, Lei Li","doi":"10.3390/biomimetics10070468","DOIUrl":null,"url":null,"abstract":"<p><p>The early detection of Alzheimer's disease (AD) in cognitively healthy individuals remains a major preclinical challenge. EEG is a promising tool that has shown effectiveness in detecting AD risk. Task-related EEG has been rarely used in Alzheimer's disease research, as most studies have focused on resting-state EEG. An interpretable deep learning framework-Interpretable Convolutional Neural Network (InterpretableCNN)-was utilized to identify AD-related EEG features. EEG data were recorded during three cognitive task conditions, and samples were labeled based on APOE genotype and polygenic risk scores. A 100-fold leave-p%-subjects-out cross-validation (LPSO-CV) was used to evaluate model performance and generalizability. The model achieved an ROC AUC of 60.84% across the tasks and subjects, with a Kappa value of 0.22, indicating fair agreement. Interpretation revealed a consistent focus on theta and alpha activity in the parietal and temporal regions-areas commonly associated with AD pathology. Task-related EEG combined with interpretable deep learning can reveal early AD risk signatures in healthy individuals. InterpretableCNN enhances transparency in feature identification, offering a valuable tool for preclinical screening.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070468","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The early detection of Alzheimer's disease (AD) in cognitively healthy individuals remains a major preclinical challenge. EEG is a promising tool that has shown effectiveness in detecting AD risk. Task-related EEG has been rarely used in Alzheimer's disease research, as most studies have focused on resting-state EEG. An interpretable deep learning framework-Interpretable Convolutional Neural Network (InterpretableCNN)-was utilized to identify AD-related EEG features. EEG data were recorded during three cognitive task conditions, and samples were labeled based on APOE genotype and polygenic risk scores. A 100-fold leave-p%-subjects-out cross-validation (LPSO-CV) was used to evaluate model performance and generalizability. The model achieved an ROC AUC of 60.84% across the tasks and subjects, with a Kappa value of 0.22, indicating fair agreement. Interpretation revealed a consistent focus on theta and alpha activity in the parietal and temporal regions-areas commonly associated with AD pathology. Task-related EEG combined with interpretable deep learning can reveal early AD risk signatures in healthy individuals. InterpretableCNN enhances transparency in feature identification, offering a valuable tool for preclinical screening.