Robust Visuomotor Control for Humanoid Loco-Manipulation Using Hybrid Reinforcement Learning.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi
{"title":"Robust Visuomotor Control for Humanoid Loco-Manipulation Using Hybrid Reinforcement Learning.","authors":"Chenzheng Wang, Qiang Huang, Xuechao Chen, Zeyu Zhang, Jing Shi","doi":"10.3390/biomimetics10070469","DOIUrl":null,"url":null,"abstract":"<p><p>Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot's tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070469","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Loco-manipulation tasks using humanoid robots have great practical value in various scenarios. While reinforcement learning (RL) has become a powerful tool for versatile and robust whole-body humanoid control, visuomotor control in loco-manipulation tasks with RL remains a great challenge due to their high dimensionality and long-horizon exploration issues. In this paper, we propose a loco-manipulation control framework for humanoid robots that utilizes model-free RL upon model-based control in the robot's tasks space. It implements a visuomotor policy with depth-image input, and uses mid-way initialization and prioritized experience sampling to accelerate policy convergence. The proposed method is validated on typical loco-manipulation tasks of load carrying and door opening resulting in an overall success rate of 83%, where our framework automatically adjusts the robot motion in reaction to changes in the environment.

基于混合强化学习的人形局部操作鲁棒视觉运动控制。
仿人机器人的局部操作任务在各种场景中都有很大的实用价值。虽然强化学习(RL)已经成为多功能和鲁棒的全身类人控制的有力工具,但由于其高维和长视界的探索问题,RL在局部操作任务中的视觉运动控制仍然是一个巨大的挑战。在本文中,我们提出了一种仿人机器人的局部操作控制框架,该框架在机器人任务空间的基于模型的控制上利用无模型强化学习。它实现了深度图像输入的视觉运动策略,并使用中途初始化和优先经验采样来加速策略收敛。该方法在典型的负重和开门等局部操作任务中得到了验证,总体成功率为83%,其中我们的框架根据环境的变化自动调整机器人的运动。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信