Multi-Sensor Fusion Framework for Reliable Localization and Trajectory Tracking of Mobile Robot by Integrating UWB, Odometry, and AHRS.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Quoc-Khai Tran, Young-Jae Ryoo
{"title":"Multi-Sensor Fusion Framework for Reliable Localization and Trajectory Tracking of Mobile Robot by Integrating UWB, Odometry, and AHRS.","authors":"Quoc-Khai Tran, Young-Jae Ryoo","doi":"10.3390/biomimetics10070478","DOIUrl":null,"url":null,"abstract":"<p><p>This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion approach reduces the impact of noisy and inaccurate UWB measurements while correcting odometry drift. The system combines raw UWB distance measurements with wheel encoder readings and heading information from an AHRS to improve robustness and positioning accuracy. Experimental validation was conducted through repeated closed-loop trajectory trials. The results demonstrate that the proposed method significantly outperforms UWB-only localization, yielding reduced noise, enhanced consistency, and lower Dynamic Time Warping (DTW) distances across repetitions. The findings confirm the system's effectiveness and suitability for real-time mobile robot navigation in indoor environments.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070478","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This paper presents a multi-sensor fusion framework for the accurate indoor localization and trajectory tracking of a differential-drive mobile robot. The proposed system integrates Ultra-Wideband (UWB) trilateration, wheel odometry, and Attitude and Heading Reference System (AHRS) data using a Kalman filter. This fusion approach reduces the impact of noisy and inaccurate UWB measurements while correcting odometry drift. The system combines raw UWB distance measurements with wheel encoder readings and heading information from an AHRS to improve robustness and positioning accuracy. Experimental validation was conducted through repeated closed-loop trajectory trials. The results demonstrate that the proposed method significantly outperforms UWB-only localization, yielding reduced noise, enhanced consistency, and lower Dynamic Time Warping (DTW) distances across repetitions. The findings confirm the system's effectiveness and suitability for real-time mobile robot navigation in indoor environments.

基于超宽带、里程计和AHRS的移动机器人可靠定位和轨迹跟踪多传感器融合框架。
提出了一种多传感器融合框架,用于差动驱动移动机器人室内精确定位和轨迹跟踪。该系统使用卡尔曼滤波器集成了超宽带(UWB)三边测量、车轮里程测量以及姿态和航向参考系统(AHRS)数据。这种融合方法减少了噪声和不准确的UWB测量的影响,同时纠正了里程计漂移。该系统将原始UWB距离测量与轮毂编码器读数和AHRS的航向信息相结合,以提高鲁棒性和定位精度。通过重复闭环轨迹试验进行实验验证。结果表明,该方法显著优于纯uwb定位,降低了噪声,增强了一致性,并且降低了重复之间的动态时间翘曲(DTW)距离。研究结果证实了该系统在室内环境下实时移动机器人导航的有效性和适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信