Impact of Biomimetic Fin on Pitching Characteristics of a Hydrofoil.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Faraz Ikram, Muhammad Yamin Younis, Bilal Akbar Chuddher, Usman Latif, Haroon Mushtaq, Kamran Afzal, Muhammad Asif Awan, Asad Ijaz, Noman Bashir
{"title":"Impact of Biomimetic Fin on Pitching Characteristics of a Hydrofoil.","authors":"Faraz Ikram, Muhammad Yamin Younis, Bilal Akbar Chuddher, Usman Latif, Haroon Mushtaq, Kamran Afzal, Muhammad Asif Awan, Asad Ijaz, Noman Bashir","doi":"10.3390/biomimetics10070462","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the foil leading edge. The work is performed in a recirculating water channel at low Reynolds numbers (Re) with a range of 1300 ≤ Re ≤ 3200. Using high-speed videography and Particle Image Velocimetry (PIV), the pitching characteristics and wakes are visualized. Passive pitching characteristics, i.e., the pitching amplitude and pitching frequency of the hydrofoils, are investigated based on their trailing edge movement. Significant improvement in both pitching frequency and amplitudes are observed for the foil with fin strips compared to the baseline simple foil. Comparing the pitching characteristics of the two foils, it is observed that the hydrofoil with biomimetic fin strips exhibits 25% and 21% higher pitching amplitude and pitching frequency, respectively, compared to that of the baseline at comparable Reynolds numbers. The initiation of pitching for the finned foil is also observed at comparatively low Reynolds numbers. The wake is also studied using time mean and fluctuating velocity profiles obtained using PIV.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070462","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic design for engineering applications may suggest the optimal performance of engineering devices. In this work the passive/pure pitching characteristics of a hydrofoil are investigated experimentally with and without a pair of biomimetic fin strips placed symmetrically on the two sides of the foil leading edge. The work is performed in a recirculating water channel at low Reynolds numbers (Re) with a range of 1300 ≤ Re ≤ 3200. Using high-speed videography and Particle Image Velocimetry (PIV), the pitching characteristics and wakes are visualized. Passive pitching characteristics, i.e., the pitching amplitude and pitching frequency of the hydrofoils, are investigated based on their trailing edge movement. Significant improvement in both pitching frequency and amplitudes are observed for the foil with fin strips compared to the baseline simple foil. Comparing the pitching characteristics of the two foils, it is observed that the hydrofoil with biomimetic fin strips exhibits 25% and 21% higher pitching amplitude and pitching frequency, respectively, compared to that of the baseline at comparable Reynolds numbers. The initiation of pitching for the finned foil is also observed at comparatively low Reynolds numbers. The wake is also studied using time mean and fluctuating velocity profiles obtained using PIV.

仿生鳍对水翼俯仰特性的影响。
工程应用的仿生设计可能建议工程设备的最佳性能。本文通过实验研究了在水翼前缘两侧对称放置一对仿生鳍条和不放置仿生鳍条时水翼的被动/纯俯仰特性。工作在低雷诺数(Re)的循环水通道中进行,范围为1300≤Re≤3200。利用高速摄像技术和粒子图像测速技术(PIV),实现了俯仰特性和尾迹的可视化。研究了基于尾缘运动的水翼被动俯仰特性,即俯仰幅度和俯仰频率。在俯仰频率和振幅方面,与基线简单的箔片相比,观察到有鳍条的箔片有显著的改善。对比两种翼型的俯仰特性发现,在相同雷诺数下,仿生鳍条水翼的俯仰幅度和俯仰频率分别比基线高25%和21%。在相对较低的雷诺数下,也观察到翅片箔的俯仰起始。利用PIV获得的时间平均和波动速度曲线对尾迹进行了研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信