{"title":"Fish Scale-Inspired Flow Control for Corner Vortex Suppression in Compressor Cascades.","authors":"Jin-Long Shen, Ho-Chun Yang, Szu-I Yeh","doi":"10.3390/biomimetics10070473","DOIUrl":null,"url":null,"abstract":"<p><p>Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like surface structure was applied to the suction side of a cascade blade to reduce viscous drag and modulate secondary flow behavior. Wind tunnel experiments and numerical simulations were conducted to evaluate its aerodynamic effects. The results show that the fish scale-inspired configuration induced climbing vortices that energized low-momentum fluid near the end wall, effectively suppressing both passage and corner vortices. This led to a reduction in spanwise flow penetration and a decrease in total pressure loss of up to 5.69%. The enhanced control of secondary flows also contributed to improved flow uniformity in the end-wall region. These findings highlight the potential of biologically inspired surface designs for corner vortex suppression and aerodynamic efficiency improvement in turbomachinery systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070473","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Corner separation at the junction of blade surfaces and end walls remains a significant challenge in compressor cascade performance. This study proposes a passive flow control strategy inspired by the geometric arrangement of biological fish scales to address this issue. A fish scale-like surface structure was applied to the suction side of a cascade blade to reduce viscous drag and modulate secondary flow behavior. Wind tunnel experiments and numerical simulations were conducted to evaluate its aerodynamic effects. The results show that the fish scale-inspired configuration induced climbing vortices that energized low-momentum fluid near the end wall, effectively suppressing both passage and corner vortices. This led to a reduction in spanwise flow penetration and a decrease in total pressure loss of up to 5.69%. The enhanced control of secondary flows also contributed to improved flow uniformity in the end-wall region. These findings highlight the potential of biologically inspired surface designs for corner vortex suppression and aerodynamic efficiency improvement in turbomachinery systems.