{"title":"Biomimetic Additive Manufacturing: Engineering Complexity Inspired by Nature's Simplicity.","authors":"Antreas Kantaros, Theodore Ganetsos, Evangelos Pallis, Michail Papoutsidakis","doi":"10.3390/biomimetics10070453","DOIUrl":null,"url":null,"abstract":"<p><p>Nature's principles offer design references for additive manufacturing (AM), enabling structures that achieve remarkable efficiency through hierarchical organization rather than material excess. This perspective article proposes a framework for integrating biomimetic principles into AM beyond morphological mimicry, focusing on functional adaptation and sustainability. By emulating biological systems like nacre, spider silk, and bone, AM utilizes traditional geometric replication to embed multifunctionality, responsiveness, and resource efficiency. Recent advances in the fields of 4D printing, soft robotics, and self-morphing systems demonstrate how time-dependent behaviors and environmental adaptability can be engineered through bioinspired material architectures. However, challenges in scalable fabrication, dynamic material programming, and true functional emulation (beyond morphological mimicry) necessitate interdisciplinary collaboration. In this context, the synthesis of biological intelligence with AM technologies offers sustainable, high-performance solutions for aerospace, biomedical, and smart infrastructure applications, once challenges related to material innovation and standardization are overcome.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292110/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070453","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Nature's principles offer design references for additive manufacturing (AM), enabling structures that achieve remarkable efficiency through hierarchical organization rather than material excess. This perspective article proposes a framework for integrating biomimetic principles into AM beyond morphological mimicry, focusing on functional adaptation and sustainability. By emulating biological systems like nacre, spider silk, and bone, AM utilizes traditional geometric replication to embed multifunctionality, responsiveness, and resource efficiency. Recent advances in the fields of 4D printing, soft robotics, and self-morphing systems demonstrate how time-dependent behaviors and environmental adaptability can be engineered through bioinspired material architectures. However, challenges in scalable fabrication, dynamic material programming, and true functional emulation (beyond morphological mimicry) necessitate interdisciplinary collaboration. In this context, the synthesis of biological intelligence with AM technologies offers sustainable, high-performance solutions for aerospace, biomedical, and smart infrastructure applications, once challenges related to material innovation and standardization are overcome.