AI-Driven Control Strategies for Biomimetic Robotics: Trends, Challenges, and Future Directions.

IF 3.4 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Hoejin Jung, Soyoon Park, Sunghoon Joe, Sangyoon Woo, Wonchil Choi, Wongyu Bae
{"title":"AI-Driven Control Strategies for Biomimetic Robotics: Trends, Challenges, and Future Directions.","authors":"Hoejin Jung, Soyoon Park, Sunghoon Joe, Sangyoon Woo, Wonchil Choi, Wongyu Bae","doi":"10.3390/biomimetics10070460","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic robotics aims to replicate biological movement, perception, and cognition, drawing inspiration from nature to develop robots with enhanced adaptability, flexibility, and intelligence. The integration of artificial intelligence has significantly advanced the control mechanisms of biomimetic robots, enabling real-time learning, optimization, and adaptive decision-making. This review systematically examines AI-driven control strategies for biomimetic robots, categorizing recent advancements and methodologies. First, we review key aspects of biomimetic robotics, including locomotion, sensory perception, and cognitive learning inspired by biological systems. Next, we explore various AI techniques-such as machine learning, deep learning, and reinforcement learning-that enhance biomimetic robot control. Furthermore, we analyze existing AI-based control methods applied to different types of biomimetic robots, highlighting their effectiveness, algorithmic approaches, and performance compared to traditional control techniques. By synthesizing the latest research, this review provides a comprehensive overview of AI-driven biomimetic robot control and identifies key challenges and future research directions. Our findings offer valuable insights into the evolving role of AI in enhancing biomimetic robotics, paving the way for more intelligent, adaptive, and efficient robotic systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070460","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Biomimetic robotics aims to replicate biological movement, perception, and cognition, drawing inspiration from nature to develop robots with enhanced adaptability, flexibility, and intelligence. The integration of artificial intelligence has significantly advanced the control mechanisms of biomimetic robots, enabling real-time learning, optimization, and adaptive decision-making. This review systematically examines AI-driven control strategies for biomimetic robots, categorizing recent advancements and methodologies. First, we review key aspects of biomimetic robotics, including locomotion, sensory perception, and cognitive learning inspired by biological systems. Next, we explore various AI techniques-such as machine learning, deep learning, and reinforcement learning-that enhance biomimetic robot control. Furthermore, we analyze existing AI-based control methods applied to different types of biomimetic robots, highlighting their effectiveness, algorithmic approaches, and performance compared to traditional control techniques. By synthesizing the latest research, this review provides a comprehensive overview of AI-driven biomimetic robot control and identifies key challenges and future research directions. Our findings offer valuable insights into the evolving role of AI in enhancing biomimetic robotics, paving the way for more intelligent, adaptive, and efficient robotic systems.

仿生机器人的人工智能驱动控制策略:趋势、挑战和未来方向。
仿生机器人旨在复制生物的运动、感知和认知,从自然中汲取灵感,开发具有增强适应性、灵活性和智能的机器人。人工智能的集成极大地推进了仿生机器人的控制机制,实现了实时学习、优化和自适应决策。本综述系统地研究了人工智能驱动的仿生机器人控制策略,对最近的进展和方法进行了分类。首先,我们回顾了仿生机器人的关键方面,包括运动、感官知觉和受生物系统启发的认知学习。接下来,我们将探索各种人工智能技术,如机器学习、深度学习和强化学习,以增强仿生机器人的控制。此外,我们分析了现有的基于人工智能的控制方法应用于不同类型的仿生机器人,强调了它们的有效性,算法方法,以及与传统控制技术相比的性能。本文综合最新研究成果,对人工智能驱动的仿生机器人控制进行了全面概述,并指出了关键挑战和未来的研究方向。我们的研究结果为人工智能在增强仿生机器人方面不断发展的作用提供了有价值的见解,为更智能、自适应和高效的机器人系统铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信