{"title":"AI-Driven Control Strategies for Biomimetic Robotics: Trends, Challenges, and Future Directions.","authors":"Hoejin Jung, Soyoon Park, Sunghoon Joe, Sangyoon Woo, Wonchil Choi, Wongyu Bae","doi":"10.3390/biomimetics10070460","DOIUrl":null,"url":null,"abstract":"<p><p>Biomimetic robotics aims to replicate biological movement, perception, and cognition, drawing inspiration from nature to develop robots with enhanced adaptability, flexibility, and intelligence. The integration of artificial intelligence has significantly advanced the control mechanisms of biomimetic robots, enabling real-time learning, optimization, and adaptive decision-making. This review systematically examines AI-driven control strategies for biomimetic robots, categorizing recent advancements and methodologies. First, we review key aspects of biomimetic robotics, including locomotion, sensory perception, and cognitive learning inspired by biological systems. Next, we explore various AI techniques-such as machine learning, deep learning, and reinforcement learning-that enhance biomimetic robot control. Furthermore, we analyze existing AI-based control methods applied to different types of biomimetic robots, highlighting their effectiveness, algorithmic approaches, and performance compared to traditional control techniques. By synthesizing the latest research, this review provides a comprehensive overview of AI-driven biomimetic robot control and identifies key challenges and future research directions. Our findings offer valuable insights into the evolving role of AI in enhancing biomimetic robotics, paving the way for more intelligent, adaptive, and efficient robotic systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070460","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Biomimetic robotics aims to replicate biological movement, perception, and cognition, drawing inspiration from nature to develop robots with enhanced adaptability, flexibility, and intelligence. The integration of artificial intelligence has significantly advanced the control mechanisms of biomimetic robots, enabling real-time learning, optimization, and adaptive decision-making. This review systematically examines AI-driven control strategies for biomimetic robots, categorizing recent advancements and methodologies. First, we review key aspects of biomimetic robotics, including locomotion, sensory perception, and cognitive learning inspired by biological systems. Next, we explore various AI techniques-such as machine learning, deep learning, and reinforcement learning-that enhance biomimetic robot control. Furthermore, we analyze existing AI-based control methods applied to different types of biomimetic robots, highlighting their effectiveness, algorithmic approaches, and performance compared to traditional control techniques. By synthesizing the latest research, this review provides a comprehensive overview of AI-driven biomimetic robot control and identifies key challenges and future research directions. Our findings offer valuable insights into the evolving role of AI in enhancing biomimetic robotics, paving the way for more intelligent, adaptive, and efficient robotic systems.