Feedback-Driven Dynamical Model for Axonal Extension on Parallel Micropatterns.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Kyle Cheng, Udathari Kumarasinghe, Cristian Staii
{"title":"Feedback-Driven Dynamical Model for Axonal Extension on Parallel Micropatterns.","authors":"Kyle Cheng, Udathari Kumarasinghe, Cristian Staii","doi":"10.3390/biomimetics10070456","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant advances in understanding neuronal development, a fully quantitative framework that integrates intracellular mechanisms with environmental cues during axonal growth remains incomplete. Here, we present a unified biophysical model that captures key mechanochemical processes governing axonal extension on micropatterned substrates. In these environments, axons preferentially align with the pattern direction, form bundles, and advance at constant speed. The model integrates four core components: (i) actin-adhesion traction coupling, (ii) lateral inhibition between neighboring axons, (iii) tubulin transport from soma to growth cone, and (iv) orientation dynamics guided by substrate anisotropy. Dynamical systems analysis reveals that a saddle-node bifurcation in the actin adhesion subsystem drives a transition to a high-traction motile state, while traction feedback shifts a pitchfork bifurcation in the signaling loop, promoting symmetry breaking and robust alignment. An exact linear solution in the tubulin transport subsystem functions as a built-in speed regulator, ensuring stable elongation rates. Simulations using experimentally inferred parameters accurately reproduce elongation speed, alignment variance, and bundle spacing. The model provides explicit design rules for enhancing axonal alignment through modulation of substrate stiffness and adhesion dynamics. By identifying key control parameters, this work enables rational design of biomaterials for neural repair and engineered tissue systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070456","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

Despite significant advances in understanding neuronal development, a fully quantitative framework that integrates intracellular mechanisms with environmental cues during axonal growth remains incomplete. Here, we present a unified biophysical model that captures key mechanochemical processes governing axonal extension on micropatterned substrates. In these environments, axons preferentially align with the pattern direction, form bundles, and advance at constant speed. The model integrates four core components: (i) actin-adhesion traction coupling, (ii) lateral inhibition between neighboring axons, (iii) tubulin transport from soma to growth cone, and (iv) orientation dynamics guided by substrate anisotropy. Dynamical systems analysis reveals that a saddle-node bifurcation in the actin adhesion subsystem drives a transition to a high-traction motile state, while traction feedback shifts a pitchfork bifurcation in the signaling loop, promoting symmetry breaking and robust alignment. An exact linear solution in the tubulin transport subsystem functions as a built-in speed regulator, ensuring stable elongation rates. Simulations using experimentally inferred parameters accurately reproduce elongation speed, alignment variance, and bundle spacing. The model provides explicit design rules for enhancing axonal alignment through modulation of substrate stiffness and adhesion dynamics. By identifying key control parameters, this work enables rational design of biomaterials for neural repair and engineered tissue systems.

并行微模式轴突扩展的反馈驱动动力学模型。
尽管在理解神经元发育方面取得了重大进展,但在轴突生长过程中,将细胞内机制与环境线索结合起来的完整定量框架仍然不完整。在这里,我们提出了一个统一的生物物理模型,该模型捕获了控制微图案基质上轴突延伸的关键机械化学过程。在这些环境中,轴突优先与模式方向对齐,形成束,并以恒定的速度前进。该模型集成了四个核心组件:(i)肌动蛋白-粘附牵引力耦合,(ii)相邻轴突之间的横向抑制,(iii)小管蛋白从体细胞到生长锥的运输,以及(iv)底物各向异性引导的取向动力学。动力学系统分析表明,肌动蛋白粘附子系统的鞍节点分叉驱动向高牵引运动状态的过渡,而牵引反馈改变信号环路中的干草叉分叉,促进对称破坏和鲁棒定向。一个精确的线性解决方案,在微管蛋白运输子系统的功能,作为一个内置的速度调节器,确保稳定的延伸率。模拟使用实验推断的参数准确再现延伸速度,对准方差和束间距。该模型提供了明确的设计规则,通过调制基底刚度和粘附动力学来增强轴向对齐。通过确定关键控制参数,这项工作使神经修复和工程组织系统的生物材料的合理设计成为可能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信