{"title":"Feedback-Driven Dynamical Model for Axonal Extension on Parallel Micropatterns.","authors":"Kyle Cheng, Udathari Kumarasinghe, Cristian Staii","doi":"10.3390/biomimetics10070456","DOIUrl":null,"url":null,"abstract":"<p><p>Despite significant advances in understanding neuronal development, a fully quantitative framework that integrates intracellular mechanisms with environmental cues during axonal growth remains incomplete. Here, we present a unified biophysical model that captures key mechanochemical processes governing axonal extension on micropatterned substrates. In these environments, axons preferentially align with the pattern direction, form bundles, and advance at constant speed. The model integrates four core components: (i) actin-adhesion traction coupling, (ii) lateral inhibition between neighboring axons, (iii) tubulin transport from soma to growth cone, and (iv) orientation dynamics guided by substrate anisotropy. Dynamical systems analysis reveals that a saddle-node bifurcation in the actin adhesion subsystem drives a transition to a high-traction motile state, while traction feedback shifts a pitchfork bifurcation in the signaling loop, promoting symmetry breaking and robust alignment. An exact linear solution in the tubulin transport subsystem functions as a built-in speed regulator, ensuring stable elongation rates. Simulations using experimentally inferred parameters accurately reproduce elongation speed, alignment variance, and bundle spacing. The model provides explicit design rules for enhancing axonal alignment through modulation of substrate stiffness and adhesion dynamics. By identifying key control parameters, this work enables rational design of biomaterials for neural repair and engineered tissue systems.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12293061/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070456","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Despite significant advances in understanding neuronal development, a fully quantitative framework that integrates intracellular mechanisms with environmental cues during axonal growth remains incomplete. Here, we present a unified biophysical model that captures key mechanochemical processes governing axonal extension on micropatterned substrates. In these environments, axons preferentially align with the pattern direction, form bundles, and advance at constant speed. The model integrates four core components: (i) actin-adhesion traction coupling, (ii) lateral inhibition between neighboring axons, (iii) tubulin transport from soma to growth cone, and (iv) orientation dynamics guided by substrate anisotropy. Dynamical systems analysis reveals that a saddle-node bifurcation in the actin adhesion subsystem drives a transition to a high-traction motile state, while traction feedback shifts a pitchfork bifurcation in the signaling loop, promoting symmetry breaking and robust alignment. An exact linear solution in the tubulin transport subsystem functions as a built-in speed regulator, ensuring stable elongation rates. Simulations using experimentally inferred parameters accurately reproduce elongation speed, alignment variance, and bundle spacing. The model provides explicit design rules for enhancing axonal alignment through modulation of substrate stiffness and adhesion dynamics. By identifying key control parameters, this work enables rational design of biomaterials for neural repair and engineered tissue systems.