Fast and Fractionated: Correlation of Dose Attenuation and the Response of Human Cancer Cells in a New Anthropomorphic Brain Phantom.

IF 3.9 3区 医学 Q1 ENGINEERING, MULTIDISCIPLINARY
Bernd Frerker, Elette Engels, Jason Paino, Vincent de Rover, John Paul Bustillo, Marie Wegner, Matthew Cameron, Stefan Fiedler, Daniel Häusermann, Guido Hildebrandt, Michael Lerch, Elisabeth Schültke
{"title":"Fast and Fractionated: Correlation of Dose Attenuation and the Response of Human Cancer Cells in a New Anthropomorphic Brain Phantom.","authors":"Bernd Frerker, Elette Engels, Jason Paino, Vincent de Rover, John Paul Bustillo, Marie Wegner, Matthew Cameron, Stefan Fiedler, Daniel Häusermann, Guido Hildebrandt, Michael Lerch, Elisabeth Schültke","doi":"10.3390/biomimetics10070440","DOIUrl":null,"url":null,"abstract":"<p><p>The results of radiotherapy in patients with primary malignant brain tumors are extremely dissatisfactory: the overall survival after a diagnosis of glioblastoma is typically less than three years. The development of spatially fractionated radiotherapy techniques could help to improve this bleak prognosis. In order to develop technical equipment and organ-specific therapy plans, dosimetry studies as well as radiobiology studies are conducted. Although perfect spheres are considered optimal phantoms by physicists, this does not reflect the wide variety of head sizes and shapes in our patient community. Depth from surface and X-ray dose absorption by tissue between dose entry point and target, two key parameters in medical physics planning, are largely determined by the shape and thickness of the skull bone. We have, therefore, designed and produced a biomimetic tool to correlate measured technical dose and biological response in human cancer cells: a brain phantom, produced from tissue-equivalent materials. In a first pilot study, utilizing our phantom to correlate technical dose measurements and metabolic response to radiation in human cancer cell lines, we demonstrate why an anthropomorphic phantom is preferable over a simple spheroid phantom.</p>","PeriodicalId":8907,"journal":{"name":"Biomimetics","volume":"10 7","pages":""},"PeriodicalIF":3.9000,"publicationDate":"2025-07-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12292920/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biomimetics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.3390/biomimetics10070440","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The results of radiotherapy in patients with primary malignant brain tumors are extremely dissatisfactory: the overall survival after a diagnosis of glioblastoma is typically less than three years. The development of spatially fractionated radiotherapy techniques could help to improve this bleak prognosis. In order to develop technical equipment and organ-specific therapy plans, dosimetry studies as well as radiobiology studies are conducted. Although perfect spheres are considered optimal phantoms by physicists, this does not reflect the wide variety of head sizes and shapes in our patient community. Depth from surface and X-ray dose absorption by tissue between dose entry point and target, two key parameters in medical physics planning, are largely determined by the shape and thickness of the skull bone. We have, therefore, designed and produced a biomimetic tool to correlate measured technical dose and biological response in human cancer cells: a brain phantom, produced from tissue-equivalent materials. In a first pilot study, utilizing our phantom to correlate technical dose measurements and metabolic response to radiation in human cancer cell lines, we demonstrate why an anthropomorphic phantom is preferable over a simple spheroid phantom.

快速与分步:在一个新的拟人化脑幻影中剂量衰减与人类癌细胞反应的相关性。
原发性恶性脑肿瘤患者的放射治疗结果非常不令人满意:胶质母细胞瘤诊断后的总生存期通常不到三年。空间分割放疗技术的发展有助于改善这种惨淡的预后。为了开发技术设备和器官特异性治疗计划,进行了剂量学研究和放射生物学研究。虽然完美的球体被物理学家认为是最理想的幻影,但这并不能反映出我们患者群体中各种各样的头部大小和形状。医学物理规划中的两个关键参数——剂量入口点与靶点之间的表面距离深度和组织对x射线剂量的吸收,在很大程度上取决于颅骨的形状和厚度。因此,我们设计并制造了一种仿生工具,将测量的技术剂量和人类癌细胞的生物反应联系起来:一种由组织等效材料制成的脑幻影。在第一个试点研究中,我们利用我们的幻影来关联技术剂量测量和人类癌细胞系对辐射的代谢反应,我们证明了为什么拟人化幻影比简单的球形幻影更好。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Biomimetics
Biomimetics Biochemistry, Genetics and Molecular Biology-Biotechnology
CiteScore
3.50
自引率
11.10%
发文量
189
审稿时长
11 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信