Evaluation of antibacterial and antibiofilm activities of green-synthesized iron oxide nanoparticles using Cyperus rotundus extract as a reducing and stabilizing agent.
{"title":"Evaluation of antibacterial and antibiofilm activities of green-synthesized iron oxide nanoparticles using Cyperus rotundus extract as a reducing and stabilizing agent.","authors":"Ankita Parmanik, Prafful Pradeep Kothari, Anindya Bose, Swati Biswas","doi":"10.1007/s10856-025-06914-2","DOIUrl":null,"url":null,"abstract":"<p><p>The development of Iron oxide nanoparticles (IONPs) from the green sources has significant attraction due to their eco-compatibility, safety, and nontoxic nature. This work demonstrated the synthesis of IONPs using the aqueous root extract of Cyperus rotundus, a traditional antibacterial plant source (Cr-IONPs). The synthesized Cr-IONPs were characterized by various analytical instruments DLS, Zeta, XRD, SEM, VSM, etc. to evaluate its physicochemical and magnetic nature. The results confirmed the uniform shape of Cr-IONPs within a size range of 30-70 nm. Additionally, they exhibited excellent colloidal stability with a Zeta potential value of -30.50 ± 1.79 mV. The VSM analysis revealed a superparamagnetic nature with zero remanence value. The antibacterial study showed that Cr-IONPs exhibited strong antibacterial potential in a concentration-dependent manner. Both Pseudomonas aeruginosa (P. aeruginosa) and Staphyllococcus aureus (S. aureus) strains demonstrated that Cr-IONPs exhibit potent antibacterial activity in a concentration-dependent manner. Furthermore, the diameter of the zone of inhibition increased with higher concentrations of the Cr-IONPs. These results demonstrate that the Cr-IONPs synthesized via a greener approach using C. rotundus extract exhibit strong antibacterial activity and biocompatibility, making them a promising candidate as a future antibacterial agent against multi-drug-resistant bacteria. Additionally, their superparamagnetic nature also broadens their potential for biomedical applications, including targeted drug delivery and diagnostics.</p>","PeriodicalId":647,"journal":{"name":"Journal of Materials Science: Materials in Medicine","volume":"36 1","pages":"60"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Science: Materials in Medicine","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10856-025-06914-2","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, BIOMEDICAL","Score":null,"Total":0}
引用次数: 0
Abstract
The development of Iron oxide nanoparticles (IONPs) from the green sources has significant attraction due to their eco-compatibility, safety, and nontoxic nature. This work demonstrated the synthesis of IONPs using the aqueous root extract of Cyperus rotundus, a traditional antibacterial plant source (Cr-IONPs). The synthesized Cr-IONPs were characterized by various analytical instruments DLS, Zeta, XRD, SEM, VSM, etc. to evaluate its physicochemical and magnetic nature. The results confirmed the uniform shape of Cr-IONPs within a size range of 30-70 nm. Additionally, they exhibited excellent colloidal stability with a Zeta potential value of -30.50 ± 1.79 mV. The VSM analysis revealed a superparamagnetic nature with zero remanence value. The antibacterial study showed that Cr-IONPs exhibited strong antibacterial potential in a concentration-dependent manner. Both Pseudomonas aeruginosa (P. aeruginosa) and Staphyllococcus aureus (S. aureus) strains demonstrated that Cr-IONPs exhibit potent antibacterial activity in a concentration-dependent manner. Furthermore, the diameter of the zone of inhibition increased with higher concentrations of the Cr-IONPs. These results demonstrate that the Cr-IONPs synthesized via a greener approach using C. rotundus extract exhibit strong antibacterial activity and biocompatibility, making them a promising candidate as a future antibacterial agent against multi-drug-resistant bacteria. Additionally, their superparamagnetic nature also broadens their potential for biomedical applications, including targeted drug delivery and diagnostics.
期刊介绍:
The Journal of Materials Science: Materials in Medicine publishes refereed papers providing significant progress in the application of biomaterials and tissue engineering constructs as medical or dental implants, prostheses and devices. Coverage spans a wide range of topics from basic science to clinical applications, around the theme of materials in medicine and dentistry. The central element is the development of synthetic and natural materials used in orthopaedic, maxillofacial, cardiovascular, neurological, ophthalmic and dental applications. Special biomedical topics include biomaterial synthesis and characterisation, biocompatibility studies, nanomedicine, tissue engineering constructs and cell substrates, regenerative medicine, computer modelling and other advanced experimental methodologies.