Exploring the Complexities of Bone Implants and Stents: Factors Influencing Successful Tissue Integration.

4区 医学 Q2 Biochemistry, Genetics and Molecular Biology
Yelda Yüregir, Seher Yaylacı, Hakan Ceylan
{"title":"Exploring the Complexities of Bone Implants and Stents: Factors Influencing Successful Tissue Integration.","authors":"Yelda Yüregir, Seher Yaylacı, Hakan Ceylan","doi":"10.1007/5584_2025_872","DOIUrl":null,"url":null,"abstract":"<p><p>Bone implants and stents are medical devices that are commonly used to treat bone and cardiovascular diseases, respectively. Both require successful integration with the surrounding tissue to achieve long-term success. Osteointegration, the process by which the implant becomes integrated with the surrounding bone, is critical to the success of bone implants, while the stent healing process involves endothelialization, re-endothelialization, and neointimal formation. The healing process of bone is complex and influenced by various factors, including the properties of the implant material, the surgical technique, and patient factors such as age and overall health. Several materials have been developed for bone implants, including metals, ceramics, and polymers. The choice of material depends on the specific application, as each material has unique properties that affect its suitability for a particular use. For example, titanium is commonly used in orthopedic implants due to its biocompatibility, strength, and ability to promote osteointegration. The healing process of stents is influenced by the materials used and the stent design. Drug-eluting stents, which release drugs to reduce restenosis, have been developed to improve the healing process. Endothelialization, the formation of a layer of endothelial cells over the stent, is critical to the prevention of restenosis. Neointimal formation, the formation of new tissue over the stent, can cause restenosis and has been a major concern with bare-metal stents. Factors that affect osteointegration and stent healing process include implant surface properties, such as roughness and topography, as well as the size, shape, and placement of the implant. In addition, patient factors such as age, overall health, and medication use can also affect the healing process. In conclusion, successful integration with the surrounding tissue is critical to the long-term success of bone implants and stents. The choice of implant material, surgical technique, and patient factors all play a role in the healing process, and ongoing research is needed to improve the design and performance of these medical devices.</p>","PeriodicalId":7270,"journal":{"name":"Advances in experimental medicine and biology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in experimental medicine and biology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/5584_2025_872","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Biochemistry, Genetics and Molecular Biology","Score":null,"Total":0}
引用次数: 0

Abstract

Bone implants and stents are medical devices that are commonly used to treat bone and cardiovascular diseases, respectively. Both require successful integration with the surrounding tissue to achieve long-term success. Osteointegration, the process by which the implant becomes integrated with the surrounding bone, is critical to the success of bone implants, while the stent healing process involves endothelialization, re-endothelialization, and neointimal formation. The healing process of bone is complex and influenced by various factors, including the properties of the implant material, the surgical technique, and patient factors such as age and overall health. Several materials have been developed for bone implants, including metals, ceramics, and polymers. The choice of material depends on the specific application, as each material has unique properties that affect its suitability for a particular use. For example, titanium is commonly used in orthopedic implants due to its biocompatibility, strength, and ability to promote osteointegration. The healing process of stents is influenced by the materials used and the stent design. Drug-eluting stents, which release drugs to reduce restenosis, have been developed to improve the healing process. Endothelialization, the formation of a layer of endothelial cells over the stent, is critical to the prevention of restenosis. Neointimal formation, the formation of new tissue over the stent, can cause restenosis and has been a major concern with bare-metal stents. Factors that affect osteointegration and stent healing process include implant surface properties, such as roughness and topography, as well as the size, shape, and placement of the implant. In addition, patient factors such as age, overall health, and medication use can also affect the healing process. In conclusion, successful integration with the surrounding tissue is critical to the long-term success of bone implants and stents. The choice of implant material, surgical technique, and patient factors all play a role in the healing process, and ongoing research is needed to improve the design and performance of these medical devices.

探讨骨植入物和支架的复杂性:影响成功组织整合的因素。
骨植入物和支架分别是常用的治疗骨骼疾病和心血管疾病的医疗设备。两者都需要与周围组织成功结合才能获得长期的成功。骨整合,即植入物与周围骨整合的过程,对骨植入物的成功至关重要,而支架愈合过程包括内皮化、再内皮化和新内膜形成。骨的愈合过程是复杂的,受多种因素的影响,包括植入材料的特性、手术技术以及患者的年龄和整体健康状况等因素。已经开发了几种用于骨植入的材料,包括金属、陶瓷和聚合物。材料的选择取决于具体的应用,因为每种材料都有独特的性能,影响其对特定用途的适用性。例如,钛因其生物相容性、强度和促进骨整合的能力而常用于骨科植入物。支架的修复过程受支架材料和支架设计的影响。药物洗脱支架,释放药物以减少再狭窄,已被开发用于改善愈合过程。内皮化,即在支架上形成一层内皮细胞,对预防再狭窄至关重要。新内膜形成,即支架上新组织的形成,可引起再狭窄,这一直是裸金属支架的主要问题。影响骨整合和支架愈合过程的因素包括种植体表面特性,如粗糙度和地形,以及种植体的大小、形状和放置位置。此外,患者的年龄、整体健康状况和药物使用等因素也会影响愈合过程。总之,与周围组织的成功融合对于骨植入物和支架的长期成功至关重要。植入材料的选择、手术技术和患者因素都在愈合过程中发挥作用,需要持续的研究来改进这些医疗设备的设计和性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Advances in experimental medicine and biology
Advances in experimental medicine and biology 医学-医学:研究与实验
CiteScore
5.90
自引率
0.00%
发文量
465
审稿时长
2-4 weeks
期刊介绍: Advances in Experimental Medicine and Biology provides a platform for scientific contributions in the main disciplines of the biomedicine and the life sciences. This series publishes thematic volumes on contemporary research in the areas of microbiology, immunology, neurosciences, biochemistry, biomedical engineering, genetics, physiology, and cancer research. Covering emerging topics and techniques in basic and clinical science, it brings together clinicians and researchers from various fields.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信