Prototype Validation of a Large-Scale CO2-to-Formate Zero-Gap Electrolyzer.

IF 6.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY
ChemSusChem Pub Date : 2025-07-25 DOI:10.1002/cssc.202501116
Jose Antonio Abarca, Cristina González-Fernández, Camilo Estevan Peralta, Axel Arruti, Esther Santos, Guillermo Díaz-Sainz, Angel Irabien
{"title":"Prototype Validation of a Large-Scale CO<sub>2</sub>-to-Formate Zero-Gap Electrolyzer.","authors":"Jose Antonio Abarca, Cristina González-Fernández, Camilo Estevan Peralta, Axel Arruti, Esther Santos, Guillermo Díaz-Sainz, Angel Irabien","doi":"10.1002/cssc.202501116","DOIUrl":null,"url":null,"abstract":"<p><p>The scale-up of gas-phase CO<sub>2</sub> electroreduction to formate is crucial for its industrial application but remains largely unexplored. This work presents the design and validation of a 100 cm<sup>2</sup> electrolyzer prototype featuring a zero-gap configuration and a serpentine flow field to ensure uniform CO<sub>2</sub> distribution. Scaling up a CO<sub>2</sub> electrolyzer requires optimized flow field design, in this case, a serpentine geometry enhances CO<sub>2</sub> transport and minimizes mass transfer limitations, thereby improving overall performance. Experimental prototype testing is conducted to evaluate the effects of current density and water content in the CO<sub>2</sub> feed. Optimal performance is achieved at 200 mA cm<sup>-</sup> <sup>2</sup> and a water content of 15 g h<sup>-</sup> <sup>1</sup>, yielding a formate concentration of 760 g L<sup>-</sup> <sup>1</sup>, a Faradaic efficiency of 67%, a production rate of 7 mmol m<sup>-</sup> <sup>2</sup> s<sup>-</sup> <sup>1</sup>, and an energy consumption of 507 kWh kmol<sup>-</sup> <sup>1</sup>. Comparisons with a 10 cm<sup>2</sup> lab-scale reactor reveal improved CO<sub>2</sub> conversion and production rate, validating the benefits of optimized flow field design and scale-up approach. While energy efficiency is somewhat reduced to increased Ohmic losses, the overall results support the technical feasibility of scaling gas-phase CO<sub>2</sub>-to-formate electrolysis. Further improvements in design and energy management are still needed to advance toward industrial implementation.</p>","PeriodicalId":149,"journal":{"name":"ChemSusChem","volume":" ","pages":"e2501116"},"PeriodicalIF":6.6000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ChemSusChem","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1002/cssc.202501116","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The scale-up of gas-phase CO2 electroreduction to formate is crucial for its industrial application but remains largely unexplored. This work presents the design and validation of a 100 cm2 electrolyzer prototype featuring a zero-gap configuration and a serpentine flow field to ensure uniform CO2 distribution. Scaling up a CO2 electrolyzer requires optimized flow field design, in this case, a serpentine geometry enhances CO2 transport and minimizes mass transfer limitations, thereby improving overall performance. Experimental prototype testing is conducted to evaluate the effects of current density and water content in the CO2 feed. Optimal performance is achieved at 200 mA cm- 2 and a water content of 15 g h- 1, yielding a formate concentration of 760 g L- 1, a Faradaic efficiency of 67%, a production rate of 7 mmol m- 2 s- 1, and an energy consumption of 507 kWh kmol- 1. Comparisons with a 10 cm2 lab-scale reactor reveal improved CO2 conversion and production rate, validating the benefits of optimized flow field design and scale-up approach. While energy efficiency is somewhat reduced to increased Ohmic losses, the overall results support the technical feasibility of scaling gas-phase CO2-to-formate electrolysis. Further improvements in design and energy management are still needed to advance toward industrial implementation.

大型二氧化碳制甲酸零间隙电解槽的原型验证。
扩大气相CO2电还原制甲酸的规模对其工业应用至关重要,但在很大程度上仍未得到探索。本工作介绍了一个100 cm2电解槽原型的设计和验证,该电解槽具有零间隙配置和蛇形流场,以确保二氧化碳均匀分布。扩大二氧化碳电解槽的规模需要优化流场设计,在这种情况下,蛇形几何形状可以增强二氧化碳的传输,最大限度地减少传质限制,从而提高整体性能。通过实验样机试验,评价了电流密度和CO2进料含水量的影响。在200 mA cm- 2和15 g h- 1含水量条件下,甲酸盐浓度为760 g L- 1,法拉第效率为67%,产率为7 mmol m- 2 s- 1,能耗为507 kWh kmol- 1。与10 cm2实验室规模反应器的对比表明,CO2转化率和产出率有所提高,验证了优化流场设计和放大方法的优势。虽然能源效率会因欧姆损耗的增加而有所降低,但总体结果支持气相co2 -甲酸电解的技术可行性。在设计和能源管理方面的进一步改进仍然需要推进工业实施。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
ChemSusChem
ChemSusChem 化学-化学综合
CiteScore
15.80
自引率
4.80%
发文量
555
审稿时长
1.8 months
期刊介绍: ChemSusChem Impact Factor (2016): 7.226 Scope: Interdisciplinary journal Focuses on research at the interface of chemistry and sustainability Features the best research on sustainability and energy Areas Covered: Chemistry Materials Science Chemical Engineering Biotechnology
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信