High-voltage hydrovoltaic generator based on micro/nano multi-scale superhydrophilic SiO2@activated carbon with enhanced capillary infiltration performance.
{"title":"High-voltage hydrovoltaic generator based on micro/nano multi-scale superhydrophilic SiO<sub>2</sub>@activated carbon with enhanced capillary infiltration performance.","authors":"Luomin Wang, Weifeng Zhang, Yuan Deng","doi":"10.1039/d5mh01101a","DOIUrl":null,"url":null,"abstract":"<p><p>At least 60 petawatts (10<sup>15</sup> watts) of energy can be absorbed and released annually through the ubiquitous water cycle, but only a fraction of it is exploited. The prospect of harvesting energy from water evaporation and streaming has garnered increasing attention. Nevertheless, there still exist challenges, including insufficient liquid-solid interface contact and inadequate liquid transport. Herein, a synergistic composite material system comprising micron-scale activated carbon and nano-scale silicon dioxide particles <i>via</i> multistep ball milling processes is introduced. The superhydrophilic material combined with a hierarchical structure enhances capillary infiltration performance, thus ensuring continuous liquid flow and sustained transpiration. As a result, the hydrovoltaic generator achieves efficient energy harvesting (an open-circuit voltage of >4.3 V) and environmental monitoring (response to variations in sunlight intensity and wind speed). Notably, the device can maintain high voltage output for over one year, demonstrating its long-term stability. This study can provide guidelines for effectively harnessing sustainable green energy sources in the future.</p>","PeriodicalId":87,"journal":{"name":"Materials Horizons","volume":" ","pages":""},"PeriodicalIF":12.2000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Horizons","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5mh01101a","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
At least 60 petawatts (1015 watts) of energy can be absorbed and released annually through the ubiquitous water cycle, but only a fraction of it is exploited. The prospect of harvesting energy from water evaporation and streaming has garnered increasing attention. Nevertheless, there still exist challenges, including insufficient liquid-solid interface contact and inadequate liquid transport. Herein, a synergistic composite material system comprising micron-scale activated carbon and nano-scale silicon dioxide particles via multistep ball milling processes is introduced. The superhydrophilic material combined with a hierarchical structure enhances capillary infiltration performance, thus ensuring continuous liquid flow and sustained transpiration. As a result, the hydrovoltaic generator achieves efficient energy harvesting (an open-circuit voltage of >4.3 V) and environmental monitoring (response to variations in sunlight intensity and wind speed). Notably, the device can maintain high voltage output for over one year, demonstrating its long-term stability. This study can provide guidelines for effectively harnessing sustainable green energy sources in the future.