Donggeun Lee, Seung-Woo Jeon, Sang-Wook Han, Junho Suh, Hee Chul Park, Chulki Kim
{"title":"Nanomechanical Switch toward Electron Turnstile Operation.","authors":"Donggeun Lee, Seung-Woo Jeon, Sang-Wook Han, Junho Suh, Hee Chul Park, Chulki Kim","doi":"10.1021/acs.nanolett.5c02496","DOIUrl":null,"url":null,"abstract":"<p><p>Linear control in nanoscale electromechanical systems is often hindered by strong nonlinear interactions and environmental sensitivity. Here, we present a nanomechanical turnstile based on a suspended cantilever with an electron island, enabling mechanically modulated electron transport. The device exhibits resonance-tuned conductance, polarity-dependent switching, and a distinct beating response arising from the linear combination of mechanical and electrical modulations. This beating serves as a clear signature of precise and linear device operation. Control experiments and finite element modeling verify the mechanical origin of the signal. Single electron-level operation may be achieved under lower temperatures and through further optimization. These results establish a robust platform for high-fidelity current modulation in next-generation nanoelectromechanical systems.</p>","PeriodicalId":53,"journal":{"name":"Nano Letters","volume":" ","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nano Letters","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acs.nanolett.5c02496","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Linear control in nanoscale electromechanical systems is often hindered by strong nonlinear interactions and environmental sensitivity. Here, we present a nanomechanical turnstile based on a suspended cantilever with an electron island, enabling mechanically modulated electron transport. The device exhibits resonance-tuned conductance, polarity-dependent switching, and a distinct beating response arising from the linear combination of mechanical and electrical modulations. This beating serves as a clear signature of precise and linear device operation. Control experiments and finite element modeling verify the mechanical origin of the signal. Single electron-level operation may be achieved under lower temperatures and through further optimization. These results establish a robust platform for high-fidelity current modulation in next-generation nanoelectromechanical systems.
期刊介绍:
Nano Letters serves as a dynamic platform for promptly disseminating original results in fundamental, applied, and emerging research across all facets of nanoscience and nanotechnology. A pivotal criterion for inclusion within Nano Letters is the convergence of at least two different areas or disciplines, ensuring a rich interdisciplinary scope. The journal is dedicated to fostering exploration in diverse areas, including:
- Experimental and theoretical findings on physical, chemical, and biological phenomena at the nanoscale
- Synthesis, characterization, and processing of organic, inorganic, polymer, and hybrid nanomaterials through physical, chemical, and biological methodologies
- Modeling and simulation of synthetic, assembly, and interaction processes
- Realization of integrated nanostructures and nano-engineered devices exhibiting advanced performance
- Applications of nanoscale materials in living and environmental systems
Nano Letters is committed to advancing and showcasing groundbreaking research that intersects various domains, fostering innovation and collaboration in the ever-evolving field of nanoscience and nanotechnology.