Nathan W. Zammit, Ariana Vargas-Castillo, P. Kent Langston, Gang Wang, Yangzhong Zhou, Bruce M. Spiegelman, Christophe Benoist, Diane Mathis
{"title":"Regulatory T cells in brown adipose tissue safeguard thermogenesis by restraining interferon-γ–producing lymphocytes","authors":"Nathan W. Zammit, Ariana Vargas-Castillo, P. Kent Langston, Gang Wang, Yangzhong Zhou, Bruce M. Spiegelman, Christophe Benoist, Diane Mathis","doi":"10.1126/sciimmunol.ads0478","DOIUrl":null,"url":null,"abstract":"<div >Whereas visceral adipose tissue (VAT) primarily stores excess energy, brown adipose tissue (BAT) dissipates it in a process termed nonshivering thermogenesis. Several key VAT features, particularly murine epidydimal VAT, are regulated by a distinct population of regulatory T (T<sub>reg</sub>) cells, raising the question of whether BAT hosts an analogous population. Although T<sub>reg</sub> cells have been observed in BAT, their properties and mechanisms of action require elucidation. We found BAT T<sub>reg</sub> cells to be heterogeneous in subtissular localization and subtype composition. Punctual depletion of T<sub>reg</sub> cells unleashed interferon-γ (IFN-γ)–producing lymphocytes in BAT, but not in subcutaneous or visceral fat depots, leading to IFN-γ–dependent mitochondrial dysfunction and metabolic dysregulation, thereby impeding nonshivering thermogenesis. Cold challenge selectively expanded the IL-18R1<sup>+</sup> T<sub>reg</sub> subtype in BAT; stripping this receptor specifically from T<sub>reg</sub> cells unleashed IFN-γ–producing lymphocytes and compromised temperature control. Thus, control of local IFN-γ production is a core feature of T<sub>reg</sub> cell control of tissue homeostasis.</div>","PeriodicalId":21734,"journal":{"name":"Science Immunology","volume":"10 109","pages":""},"PeriodicalIF":16.3000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciimmunol.ads0478","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Immunology","FirstCategoryId":"3","ListUrlMain":"https://www.science.org/doi/10.1126/sciimmunol.ads0478","RegionNum":1,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"IMMUNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Whereas visceral adipose tissue (VAT) primarily stores excess energy, brown adipose tissue (BAT) dissipates it in a process termed nonshivering thermogenesis. Several key VAT features, particularly murine epidydimal VAT, are regulated by a distinct population of regulatory T (Treg) cells, raising the question of whether BAT hosts an analogous population. Although Treg cells have been observed in BAT, their properties and mechanisms of action require elucidation. We found BAT Treg cells to be heterogeneous in subtissular localization and subtype composition. Punctual depletion of Treg cells unleashed interferon-γ (IFN-γ)–producing lymphocytes in BAT, but not in subcutaneous or visceral fat depots, leading to IFN-γ–dependent mitochondrial dysfunction and metabolic dysregulation, thereby impeding nonshivering thermogenesis. Cold challenge selectively expanded the IL-18R1+ Treg subtype in BAT; stripping this receptor specifically from Treg cells unleashed IFN-γ–producing lymphocytes and compromised temperature control. Thus, control of local IFN-γ production is a core feature of Treg cell control of tissue homeostasis.
期刊介绍:
Science Immunology is a peer-reviewed journal that publishes original research articles in the field of immunology. The journal encourages the submission of research findings from all areas of immunology, including studies on innate and adaptive immunity, immune cell development and differentiation, immunogenomics, systems immunology, structural immunology, antigen presentation, immunometabolism, and mucosal immunology. Additionally, the journal covers research on immune contributions to health and disease, such as host defense, inflammation, cancer immunology, autoimmunity, allergy, transplantation, and immunodeficiency. Science Immunology maintains the same high-quality standard as other journals in the Science family and aims to facilitate understanding of the immune system by showcasing innovative advances in immunology research from all organisms and model systems, including humans.