Unveiling phase evolution of complex oxides toward precise solid-state synthesis

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Lin Yang, Zhewen Zhu, Yitian Feng, Daxian Zuo, Shi Huang, Yao Yang, Lihui Zhou, Stephen J. Harris, Lin Zeng, Yizhou Zhu, Jiayu Wan
{"title":"Unveiling phase evolution of complex oxides toward precise solid-state synthesis","authors":"Lin Yang,&nbsp;Zhewen Zhu,&nbsp;Yitian Feng,&nbsp;Daxian Zuo,&nbsp;Shi Huang,&nbsp;Yao Yang,&nbsp;Lihui Zhou,&nbsp;Stephen J. Harris,&nbsp;Lin Zeng,&nbsp;Yizhou Zhu,&nbsp;Jiayu Wan","doi":"10.1126/sciadv.adx3927","DOIUrl":null,"url":null,"abstract":"<div >The precise synthesis of high-purity materials is crucial in accelerating materials discovery. However, the lack of theoretical understanding and practical guidance poses challenges, particularly for materials with compositional and structural complexity. Here, we propose a feasible principle toward synthesizing complex inorganic solids. This principle involves the introduction of an inducer that induces crucial intermediates, which in turn guide the synthesis pathway toward the target materials through structural templating, named inducer-facilitated assembly through structural templating (i-FAST). We validate this principle with three distinct oxides: garnet Li<sub>6.5</sub>La<sub>3</sub>Zr<sub>1.5</sub>Ta<sub>0.5</sub>O<sub>12</sub>, perovskite BaCo<sub>0.8</sub>Sn<sub>0.2</sub>O<sub>3</sub>, and pyrochlore Gd<sub>1.5</sub>La<sub>0.5</sub>Zr<sub>2</sub>O<sub>7</sub>. This structural templating approach enables synthesis along predesigned pathways, forming intermediates that are thermodynamically favored for prior formation and kinetically preferred for the final product, resulting in precisely synthesizing high-purity target materials. This study not only represents a substantial advancement in comprehending the interplay between thermodynamics/kinetics and phase evolution in complex solid synthesis but also provides an effective strategy for guiding exploratory solid-state synthesis.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adx3927","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adx3927","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The precise synthesis of high-purity materials is crucial in accelerating materials discovery. However, the lack of theoretical understanding and practical guidance poses challenges, particularly for materials with compositional and structural complexity. Here, we propose a feasible principle toward synthesizing complex inorganic solids. This principle involves the introduction of an inducer that induces crucial intermediates, which in turn guide the synthesis pathway toward the target materials through structural templating, named inducer-facilitated assembly through structural templating (i-FAST). We validate this principle with three distinct oxides: garnet Li6.5La3Zr1.5Ta0.5O12, perovskite BaCo0.8Sn0.2O3, and pyrochlore Gd1.5La0.5Zr2O7. This structural templating approach enables synthesis along predesigned pathways, forming intermediates that are thermodynamically favored for prior formation and kinetically preferred for the final product, resulting in precisely synthesizing high-purity target materials. This study not only represents a substantial advancement in comprehending the interplay between thermodynamics/kinetics and phase evolution in complex solid synthesis but also provides an effective strategy for guiding exploratory solid-state synthesis.

Abstract Image

揭示复合氧化物向精确固态合成的相演化
高纯度材料的精确合成是加速材料发现的关键。然而,缺乏理论认识和实践指导带来了挑战,特别是对于具有成分和结构复杂性的材料。在此,我们提出了一种合成复杂无机固体的可行原理。该原理涉及引入诱导剂,诱导关键中间体,进而通过结构模板引导合成途径走向目标材料,称为诱导剂通过结构模板促进组装(i-FAST)。我们用三种不同的氧化物验证了这一原理:石榴石Li6.5La3Zr1.5Ta0.5O12,钙钛矿BaCo0.8Sn0.2O3和焦绿石Gd1.5La0.5Zr2O7。这种结构模板方法可以沿着预先设计的途径合成,形成在热力学上有利于预先形成的中间体,在动力学上有利于最终产物,从而精确合成高纯度的目标材料。该研究不仅在理解复杂固体合成中热力学/动力学与相演化之间的相互作用方面取得了实质性进展,而且为指导探索性固体合成提供了有效的策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信