Real-time signal processing enabled by fused networks on a memristor-based system on a chip

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zixu Wang, Wenhao Song, Tong Wang, Zihan Wang, Yichun Xu, Mingyi Rao, Fuxi Cai, Wenbo Yin, Mike Shuo-Wei Chen, Ning Ge, Maxwell Collins, Kangjun Bai, Sabyasachi Ganguli, Michael R. Page, Qing Wu, Linda Katehi, Qiangfei Xia, Miao Hu, J. Joshua Yang
{"title":"Real-time signal processing enabled by fused networks on a memristor-based system on a chip","authors":"Zixu Wang,&nbsp;Wenhao Song,&nbsp;Tong Wang,&nbsp;Zihan Wang,&nbsp;Yichun Xu,&nbsp;Mingyi Rao,&nbsp;Fuxi Cai,&nbsp;Wenbo Yin,&nbsp;Mike Shuo-Wei Chen,&nbsp;Ning Ge,&nbsp;Maxwell Collins,&nbsp;Kangjun Bai,&nbsp;Sabyasachi Ganguli,&nbsp;Michael R. Page,&nbsp;Qing Wu,&nbsp;Linda Katehi,&nbsp;Qiangfei Xia,&nbsp;Miao Hu,&nbsp;J. Joshua Yang","doi":"10.1126/sciadv.adv3436","DOIUrl":null,"url":null,"abstract":"<div >The von Neumann bottleneck has led to a substantial rise in energy consumption of computing hardware and memory systems, particularly for data-intensive tasks like signal processing. Memristor-based in-memory computing offers an efficient alternative by performing computations within analog memory. Here, we demonstrate real-time signal processing using a fused network that combines the real-time discrete Fourier transform (DFT) and convolutional neural network (CNN) on a memristor-based analog system on a chip (SoC). A 128-by-128 memristor crossbar array performs the DFT on audio signals with a peak signal-to-noise ratio of 33.49 dB, while the following CNN classifies the resulting spectrograms with 94.72% accuracy on the AudioMNIST dataset. In addition, convolution-based edge detection is applied to real-time video frames. The SoC offers substantial energy efficiency improvement over traditional digital systems in signal processing tasks. This work highlights the potential of memristor-based SoCs for efficient real-time signal processing.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv3436","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv3436","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

The von Neumann bottleneck has led to a substantial rise in energy consumption of computing hardware and memory systems, particularly for data-intensive tasks like signal processing. Memristor-based in-memory computing offers an efficient alternative by performing computations within analog memory. Here, we demonstrate real-time signal processing using a fused network that combines the real-time discrete Fourier transform (DFT) and convolutional neural network (CNN) on a memristor-based analog system on a chip (SoC). A 128-by-128 memristor crossbar array performs the DFT on audio signals with a peak signal-to-noise ratio of 33.49 dB, while the following CNN classifies the resulting spectrograms with 94.72% accuracy on the AudioMNIST dataset. In addition, convolution-based edge detection is applied to real-time video frames. The SoC offers substantial energy efficiency improvement over traditional digital systems in signal processing tasks. This work highlights the potential of memristor-based SoCs for efficient real-time signal processing.

Abstract Image

实时信号处理由芯片上基于忆阻器的系统上的融合网络实现
冯·诺伊曼瓶颈导致了计算硬件和存储系统能耗的大幅上升,特别是对于信号处理等数据密集型任务。基于忆阻器的内存计算通过在模拟内存中执行计算提供了一种有效的替代方案。在这里,我们展示了在基于忆阻器的片上模拟系统(SoC)上使用融合网络结合实时离散傅立叶变换(DFT)和卷积神经网络(CNN)的实时信号处理。128 × 128忆阻交叉棒阵列对音频信号执行DFT,峰值信噪比为33.49 dB,而下面的CNN在AudioMNIST数据集上对得到的频谱图进行分类,准确率为94.72%。此外,将基于卷积的边缘检测应用于实时视频帧。在信号处理任务中,SoC提供了比传统数字系统大幅提高的能源效率。这项工作强调了基于忆阻器的soc在高效实时信号处理方面的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信