Hui-Yi Yang, Hai-Bao Du, Yong-Ping Bai, Ya-Hui Ding, Yi-Fan Ma, Gang Wu, Ning Zhang, Nathaniel K. Szymczak, Shuo Guo
{"title":"A general leaving group assisted strategy for synthesis of pentafluorosulfanyl allylic compounds","authors":"Hui-Yi Yang, Hai-Bao Du, Yong-Ping Bai, Ya-Hui Ding, Yi-Fan Ma, Gang Wu, Ning Zhang, Nathaniel K. Szymczak, Shuo Guo","doi":"10.1126/sciadv.adw8408","DOIUrl":null,"url":null,"abstract":"<div >Fluorine-containing allyl compounds are prevalent in drugs and bioactive molecules. Here, we report a straightforward and efficient radical pentafluorosulfanylation of allyl sulfones using sulfur chloride pentafluoride (SF<sub>5</sub>Cl) to synthesize structurally diverse pentafluorosulfanyl allylic compounds. This transformation exhibits excellent functional group tolerance and achieves an impressive isolated yield of up to 98% in just 1 minute under ultraviolet light. Mechanistic studies suggest that the sulfonyl group acts as a free radical leaving group, with the capability of abstracting the chlorine atom from SF<sub>5</sub>Cl. This radical chain propagation pathway facilitates the rapid regeneration of the sulfur pentafluoride radical, resulting in a notably high quantum yield. Moreover, this light-driven radical pentafluorosulfanylation simplifies the synthetic pathway to modify complex and bioactive molecules. In addition, the drug-modified pentafluorosulfanyl compounds exhibited promising effects in inhibiting cancer cell proliferation, both in vitro and in vivo. Therefore, this protocol provides a practical synthetic route to radical pentafluorosulfanylation, highlighting its potential in drug discovery.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adw8408","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adw8408","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Fluorine-containing allyl compounds are prevalent in drugs and bioactive molecules. Here, we report a straightforward and efficient radical pentafluorosulfanylation of allyl sulfones using sulfur chloride pentafluoride (SF5Cl) to synthesize structurally diverse pentafluorosulfanyl allylic compounds. This transformation exhibits excellent functional group tolerance and achieves an impressive isolated yield of up to 98% in just 1 minute under ultraviolet light. Mechanistic studies suggest that the sulfonyl group acts as a free radical leaving group, with the capability of abstracting the chlorine atom from SF5Cl. This radical chain propagation pathway facilitates the rapid regeneration of the sulfur pentafluoride radical, resulting in a notably high quantum yield. Moreover, this light-driven radical pentafluorosulfanylation simplifies the synthetic pathway to modify complex and bioactive molecules. In addition, the drug-modified pentafluorosulfanyl compounds exhibited promising effects in inhibiting cancer cell proliferation, both in vitro and in vivo. Therefore, this protocol provides a practical synthetic route to radical pentafluorosulfanylation, highlighting its potential in drug discovery.
期刊介绍:
Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.