Genetically engineered chondrocyte-mimetic nanoplatform attenuates osteoarthritis by blocking IL-1β and restoring sirtuin-3

IF 11.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Caifeng Deng, Liukang Yu, Xuan Zhao, Yuxiao Chen, Jiabin Mei, Jie Wei, Xiaoyuan Chen, Guanghua Lei, Chao Zeng
{"title":"Genetically engineered chondrocyte-mimetic nanoplatform attenuates osteoarthritis by blocking IL-1β and restoring sirtuin-3","authors":"Caifeng Deng,&nbsp;Liukang Yu,&nbsp;Xuan Zhao,&nbsp;Yuxiao Chen,&nbsp;Jiabin Mei,&nbsp;Jie Wei,&nbsp;Xiaoyuan Chen,&nbsp;Guanghua Lei,&nbsp;Chao Zeng","doi":"10.1126/sciadv.adv4238","DOIUrl":null,"url":null,"abstract":"<div >Osteoarthritis (OA) is a multifactorial disease characterized by joint inflammation and cartilage degeneration, with no disease-modifying drugs available. The vicious cycle between the inflammatory microenvironment (inflamed soil) and dysfunctional chondrocytes (degeneration-related seeds) drives the chronic progressive deterioration of OA. Here, we report a genetically engineered chondrocyte-mimetic nanoplatform (termed HKL-GECM@MPNPs) comprising a honokiol (HKL)–loaded mitochondrion-targeting nanoparticle core coated with an interleukin-1 receptor type 2 (IL-1R2)–overexpressing chondrocyte membrane. HKL-GECM@MPNPs fuse with OA chondrocytes, transferring IL-1R2 onto the plasma membrane and reprogramming the inflamed microenvironment through IL-1β blockade. Mitochondrion-targeting cores then directly deliver HKL to restore mitochondrial sirtuin-3 in OA chondrocytes, reprogramming the cells’ pathological phenotype. Intra-articular injection of HKL-GECM@MPNPs in OA mice reduces inflammation, alleviates joint pain, and mitigates cartilage damage through a synergistic effect. Moreover, HKL-GECM@MPNPs effectively reverse cartilage degeneration in human OA cartilage explants. This approach highlights the potential of HKL-GECM@MPNPs to combine IL-1β blockade and mitochondrial sirtuin-3 restoration as a promising strategy for OA treatment.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 30","pages":""},"PeriodicalIF":11.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.adv4238","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.adv4238","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Osteoarthritis (OA) is a multifactorial disease characterized by joint inflammation and cartilage degeneration, with no disease-modifying drugs available. The vicious cycle between the inflammatory microenvironment (inflamed soil) and dysfunctional chondrocytes (degeneration-related seeds) drives the chronic progressive deterioration of OA. Here, we report a genetically engineered chondrocyte-mimetic nanoplatform (termed HKL-GECM@MPNPs) comprising a honokiol (HKL)–loaded mitochondrion-targeting nanoparticle core coated with an interleukin-1 receptor type 2 (IL-1R2)–overexpressing chondrocyte membrane. HKL-GECM@MPNPs fuse with OA chondrocytes, transferring IL-1R2 onto the plasma membrane and reprogramming the inflamed microenvironment through IL-1β blockade. Mitochondrion-targeting cores then directly deliver HKL to restore mitochondrial sirtuin-3 in OA chondrocytes, reprogramming the cells’ pathological phenotype. Intra-articular injection of HKL-GECM@MPNPs in OA mice reduces inflammation, alleviates joint pain, and mitigates cartilage damage through a synergistic effect. Moreover, HKL-GECM@MPNPs effectively reverse cartilage degeneration in human OA cartilage explants. This approach highlights the potential of HKL-GECM@MPNPs to combine IL-1β blockade and mitochondrial sirtuin-3 restoration as a promising strategy for OA treatment.

Abstract Image

基因工程模拟软骨细胞纳米平台通过阻断IL-1β和恢复sirtuin-3来减轻骨关节炎
骨关节炎(OA)是一种以关节炎症和软骨变性为特征的多因素疾病,目前尚无治疗药物。炎症微环境(发炎的土壤)和功能失调的软骨细胞(变性相关的种子)之间的恶性循环驱动OA的慢性进行性恶化。在这里,我们报道了一种基因工程的模拟软骨细胞纳米平台(称为HKL-GECM@MPNPs),该平台包括一种装载有宏木醇(HKL)的线粒体靶向纳米颗粒核心,该纳米颗粒核心包裹有过表达白细胞介素-1受体2型(IL-1R2)的软骨细胞膜。HKL-GECM@MPNPs与OA软骨细胞融合,将IL-1R2转移到质膜上,并通过IL-1β阻断对炎症微环境进行重编程。然后,线粒体靶向核心直接递送HKL以恢复OA软骨细胞的线粒体sirtuin-3,重新编程细胞的病理表型。骨性关节炎小鼠关节内注射HKL-GECM@MPNPs可通过协同作用减轻炎症,减轻关节疼痛,减轻软骨损伤。此外,HKL-GECM@MPNPs可有效逆转人OA软骨外植体的软骨退变。该方法强调了HKL-GECM@MPNPs结合IL-1β阻断和线粒体sirtuin-3恢复作为OA治疗有希望的策略的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信