Unsteady Radiative MHD Casson Fluid Flow Over an Impulsively Started Porous Plate With Caputo Fractional Derivatives

IF 1.8 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
Mehari Fentahun Endalew, Xiaoming Zhang
{"title":"Unsteady Radiative MHD Casson Fluid Flow Over an Impulsively Started Porous Plate With Caputo Fractional Derivatives","authors":"Mehari Fentahun Endalew,&nbsp;Xiaoming Zhang","doi":"10.1002/eng2.70308","DOIUrl":null,"url":null,"abstract":"<p>This study investigates the unsteady natural convection flow of a hydromagnetic Casson fluid past a suddenly accelerated porous plate, incorporating thermal radiation and internal heat generation. The key novelty lies in employing fractional calculus via the Caputo derivative to generalize classical conservation equations, enabling the modeling of memory and hereditary effects crucial for non-Newtonian fluid dynamics. Unlike prior studies focusing on classical or steady-state models, this work develops a fractional-order framework to capture complex unsteady transport phenomena. Exact analytical solutions for momentum, thermal, and concentration equations are derived using Laplace transforms, providing closed-form expressions in the Laplace domain and explicit time-dependent solutions. These serve as rare benchmarks for such systems. The study uniquely integrates thermal radiation and heat generation—often examined separately—while considering porous media and sudden plate motion, enhancing relevance to thermal systems, biomedical flows, and filtration processes. Key findings indicate that increasing the fractional order boosts velocity, temperature, and concentration fields, underscoring the significance of memory effects in transport dynamics. The magnetic field suppresses flow due to Lorentz forces, while thermal radiation and heat generation enhance thermal diffusion. Analytical expressions for skin friction, Nusselt number, and Sherwood number are derived, offering validation benchmarks. A comparison with published results shows strong agreement. The study advances analytical modeling of radiative, magnetized non-Newtonian flows in porous media, with applications in biofluid mechanics, thermal engineering, and industrial processes involving complex fluids. The fractional approach provides a more accurate and generalized framework for such systems.</p>","PeriodicalId":72922,"journal":{"name":"Engineering reports : open access","volume":"7 7","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/eng2.70308","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Engineering reports : open access","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/eng2.70308","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

Abstract

This study investigates the unsteady natural convection flow of a hydromagnetic Casson fluid past a suddenly accelerated porous plate, incorporating thermal radiation and internal heat generation. The key novelty lies in employing fractional calculus via the Caputo derivative to generalize classical conservation equations, enabling the modeling of memory and hereditary effects crucial for non-Newtonian fluid dynamics. Unlike prior studies focusing on classical or steady-state models, this work develops a fractional-order framework to capture complex unsteady transport phenomena. Exact analytical solutions for momentum, thermal, and concentration equations are derived using Laplace transforms, providing closed-form expressions in the Laplace domain and explicit time-dependent solutions. These serve as rare benchmarks for such systems. The study uniquely integrates thermal radiation and heat generation—often examined separately—while considering porous media and sudden plate motion, enhancing relevance to thermal systems, biomedical flows, and filtration processes. Key findings indicate that increasing the fractional order boosts velocity, temperature, and concentration fields, underscoring the significance of memory effects in transport dynamics. The magnetic field suppresses flow due to Lorentz forces, while thermal radiation and heat generation enhance thermal diffusion. Analytical expressions for skin friction, Nusselt number, and Sherwood number are derived, offering validation benchmarks. A comparison with published results shows strong agreement. The study advances analytical modeling of radiative, magnetized non-Newtonian flows in porous media, with applications in biofluid mechanics, thermal engineering, and industrial processes involving complex fluids. The fractional approach provides a more accurate and generalized framework for such systems.

Abstract Image

带Caputo分数阶导数的非定常辐射MHD卡森流体在脉冲启动多孔板上的流动
本文研究了磁卡森流体通过突然加速多孔板时的非定常自然对流流动,包括热辐射和内部热生成。关键的新颖之处在于通过卡普托导数采用分数阶微积分来推广经典守恒方程,使非牛顿流体动力学中至关重要的记忆和遗传效应建模成为可能。不同于以往的研究侧重于经典或稳态模型,这项工作开发了一个分数阶框架来捕捉复杂的非定常输运现象。动量、热和浓度方程的精确解析解是使用拉普拉斯变换导出的,在拉普拉斯域中提供封闭形式的表达式和显式的随时间变化的解。这些是此类系统的罕见基准。该研究独特地整合了热辐射和热产生(通常单独检查),同时考虑了多孔介质和突然的板块运动,增强了与热系统、生物医学流动和过滤过程的相关性。主要研究结果表明,分数阶的增加增加了速度场、温度场和浓度场,强调了记忆效应在输运动力学中的重要性。由于洛伦兹力,磁场抑制了流动,而热辐射和热的产生增强了热扩散。导出了皮肤摩擦、努塞尔数和舍伍德数的解析表达式,提供了验证基准。与已发表结果的比较显示出强烈的一致性。该研究推进了多孔介质中辐射磁化非牛顿流的分析建模,应用于生物流体力学、热工程和涉及复杂流体的工业过程。分数方法为这类系统提供了一个更准确和广义的框架。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
5.10
自引率
0.00%
发文量
0
审稿时长
19 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信