Burak F. Göçer, Wiebke Mörbe, Bülent Tezkan, Mohammad Israil, Pritam Yogeshwar
{"title":"3D Inversion of Radiomagnetotelluric Data From the Sub-Himalayan Fault Zone, India—Combining Scalar, Tensor and Tipper Transfer Functions","authors":"Burak F. Göçer, Wiebke Mörbe, Bülent Tezkan, Mohammad Israil, Pritam Yogeshwar","doi":"10.1111/1365-2478.70058","DOIUrl":null,"url":null,"abstract":"<p>Radiomagnetotellurics (RMTs) is an efficient frequency-domain electromagnetic technique for mapping subsurface electrical resistivity, particularly suited for near-surface investigations. This method utilizes commonly available civil and military radio transmitters, broadcasting between 10 kHz and 1 MHz, as sources to measure electric and magnetic field responses at the surface. Modern RMT receiver systems comprise five components (two electrical antennas and three magnetic coils), allowing for the estimation of the full impedance tensor and the tipper transfer function for the vertical magnetic field. In this study, RMT data were acquired to investigate the shallow structure of the Himalayan Frontal Thrust (HFT) fault in the Sub-Himalayan region around Uttarakhand, India. Data were collected at 312 stations along eight profiles over an area of roughly 500 m × 70 m. The dense station distribution enables a 3D inversion of the dataset in the extended frequency range of up to 1 MHz. The observed data were processed using scalar as well as tensor estimations to obtain full impedances and tipper transfer function. We integrated scalar-estimated data from zones with an approximately 2D conductivity distribution in the full-tensor dataset. This approach ensured robust 3D modelling during the initial RMT inversion performed with the ModEM algorithm. To date, a joint 3D interpretation of RMT full impedance tensor and tipper transfer function has not yet been reported. Furthermore, the near-surface manifestations of the HFT have not previously been explored by RMT. The derived 3D model from combined scalar, tensor and tipper data reveals a conductivity contrast zone that aligns well with the HFT fault outcrop and complementary geological information. The derived geo-electrical structure recovers the local sediment thickness and shallow fault inclination.</p>","PeriodicalId":12793,"journal":{"name":"Geophysical Prospecting","volume":"73 6","pages":""},"PeriodicalIF":1.8000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2478.70058","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geophysical Prospecting","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/1365-2478.70058","RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 0
Abstract
Radiomagnetotellurics (RMTs) is an efficient frequency-domain electromagnetic technique for mapping subsurface electrical resistivity, particularly suited for near-surface investigations. This method utilizes commonly available civil and military radio transmitters, broadcasting between 10 kHz and 1 MHz, as sources to measure electric and magnetic field responses at the surface. Modern RMT receiver systems comprise five components (two electrical antennas and three magnetic coils), allowing for the estimation of the full impedance tensor and the tipper transfer function for the vertical magnetic field. In this study, RMT data were acquired to investigate the shallow structure of the Himalayan Frontal Thrust (HFT) fault in the Sub-Himalayan region around Uttarakhand, India. Data were collected at 312 stations along eight profiles over an area of roughly 500 m × 70 m. The dense station distribution enables a 3D inversion of the dataset in the extended frequency range of up to 1 MHz. The observed data were processed using scalar as well as tensor estimations to obtain full impedances and tipper transfer function. We integrated scalar-estimated data from zones with an approximately 2D conductivity distribution in the full-tensor dataset. This approach ensured robust 3D modelling during the initial RMT inversion performed with the ModEM algorithm. To date, a joint 3D interpretation of RMT full impedance tensor and tipper transfer function has not yet been reported. Furthermore, the near-surface manifestations of the HFT have not previously been explored by RMT. The derived 3D model from combined scalar, tensor and tipper data reveals a conductivity contrast zone that aligns well with the HFT fault outcrop and complementary geological information. The derived geo-electrical structure recovers the local sediment thickness and shallow fault inclination.
期刊介绍:
Geophysical Prospecting publishes the best in primary research on the science of geophysics as it applies to the exploration, evaluation and extraction of earth resources. Drawing heavily on contributions from researchers in the oil and mineral exploration industries, the journal has a very practical slant. Although the journal provides a valuable forum for communication among workers in these fields, it is also ideally suited to researchers in academic geophysics.