Materials-Algorithm Co-Optimization for Specific and Quantitative Gas Detection

IF 24.5 Q1 CHEMISTRY, PHYSICAL
Long Li, Lanpeng Guo, Binzhou Ying, Xinyi Chen, Wenjian Zhang, Kenan Liu, Shikang Xu, Licheng Zhou, Tiankun Li, Wei Luo, Bingbing Chen, Hua-Yao Li, Huan Liu
{"title":"Materials-Algorithm Co-Optimization for Specific and Quantitative Gas Detection","authors":"Long Li,&nbsp;Lanpeng Guo,&nbsp;Binzhou Ying,&nbsp;Xinyi Chen,&nbsp;Wenjian Zhang,&nbsp;Kenan Liu,&nbsp;Shikang Xu,&nbsp;Licheng Zhou,&nbsp;Tiankun Li,&nbsp;Wei Luo,&nbsp;Bingbing Chen,&nbsp;Hua-Yao Li,&nbsp;Huan Liu","doi":"10.1002/idm2.70001","DOIUrl":null,"url":null,"abstract":"<p>Rapid, reliable, and quantitative formaldehyde detection has become increasingly important in the processing industry and environmental protection. As an intelligent electronic instrument, the realization of electronic noses (e-noses) for quantitative gas detection relies on enhanced specificity. Here, we propose a materials-algorithm co-optimization (MACO) method that enables quantitative detection of formaldehyde in e-nose. This approach employs thermokinetic feature engineering to optimize data quality and algorithm selection, thereby reducing dependence on data scale and computing power resources. Specific thermokinetic activation patterns for formaldehyde can be generated through a single materials processing strategy. Through a combination of thermokinetic feature-driven machine learning, we demonstrated an e-nose—comprising only five Co<sub>3</sub>O<sub>4</sub>-based gas sensors—capable of discriminating formaldehyde from ethanol. The mathematical model reveals that the physicochemical mechanism of odor coding logic in our e-nose is dictated by the mass action law. A quantitative detection of formaldehyde in 0.1–20 ppm with a precision of 5% full-scale (F.S.) has been demonstrated. We also showcase the adaptability of e-nose for binary mixture analysis. The detection model of the MACO-driven e-nose is simple and interpretable, showing broad prospects to achieve quantitative gas detection rapidly and at a low cost.</p>","PeriodicalId":100685,"journal":{"name":"Interdisciplinary Materials","volume":"4 4","pages":"630-639"},"PeriodicalIF":24.5000,"publicationDate":"2025-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/idm2.70001","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Interdisciplinary Materials","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/idm2.70001","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Rapid, reliable, and quantitative formaldehyde detection has become increasingly important in the processing industry and environmental protection. As an intelligent electronic instrument, the realization of electronic noses (e-noses) for quantitative gas detection relies on enhanced specificity. Here, we propose a materials-algorithm co-optimization (MACO) method that enables quantitative detection of formaldehyde in e-nose. This approach employs thermokinetic feature engineering to optimize data quality and algorithm selection, thereby reducing dependence on data scale and computing power resources. Specific thermokinetic activation patterns for formaldehyde can be generated through a single materials processing strategy. Through a combination of thermokinetic feature-driven machine learning, we demonstrated an e-nose—comprising only five Co3O4-based gas sensors—capable of discriminating formaldehyde from ethanol. The mathematical model reveals that the physicochemical mechanism of odor coding logic in our e-nose is dictated by the mass action law. A quantitative detection of formaldehyde in 0.1–20 ppm with a precision of 5% full-scale (F.S.) has been demonstrated. We also showcase the adaptability of e-nose for binary mixture analysis. The detection model of the MACO-driven e-nose is simple and interpretable, showing broad prospects to achieve quantitative gas detection rapidly and at a low cost.

Abstract Image

特定和定量气体检测的材料-算法协同优化
快速、可靠、定量的甲醛检测在加工业和环境保护中变得越来越重要。电子鼻作为一种智能电子仪器,实现气体定量检测依赖于增强的特异性。在这里,我们提出了一种材料-算法协同优化(MACO)方法,可以定量检测电子鼻中的甲醛。该方法利用热力学特征工程优化数据质量和算法选择,减少了对数据规模和计算能力资源的依赖。甲醛的特定热动力学活化模式可以通过单一的材料处理策略产生。通过结合热动力学特征驱动的机器学习,我们展示了一个电子鼻——仅由五个基于co3o4的气体传感器组成——能够区分甲醛和乙醇。数学模型揭示了我们电子鼻中气味编码逻辑的物理化学机制是由质量作用定律决定的。甲醛在0.1-20 ppm的定量检测精度为5%满量程(F.S.)已被证明。我们还展示了电子鼻对二元混合物分析的适应性。maco驱动电子鼻的检测模型简单、可解释性强,在快速、低成本地实现气体定量检测方面具有广阔的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信