Thermal Performance Optimization of PCM Systems Using Graphene Nanoparticles and Advanced Fin Geometries Under Variable Heat Input Conditions

Energy Storage Pub Date : 2025-07-24 DOI:10.1002/est2.70238
Naresh Kumar Goud Ranga, Piyush Verma, S. K. Gugulothu, P. Gandhi
{"title":"Thermal Performance Optimization of PCM Systems Using Graphene Nanoparticles and Advanced Fin Geometries Under Variable Heat Input Conditions","authors":"Naresh Kumar Goud Ranga,&nbsp;Piyush Verma,&nbsp;S. K. Gugulothu,&nbsp;P. Gandhi","doi":"10.1002/est2.70238","DOIUrl":null,"url":null,"abstract":"<div>\n \n <p>Phase change material (PCM)-based thermal energy storage systems offer high energy density but are often limited by low thermal conductivity, leading to inefficient heat transfer and extended melting times. This study presents a hybrid thermal enhancement strategy combining 10% graphene nanoparticle (GNP)-doped PCM with advanced fin geometries in a fixed 5000 mm<sup>2</sup> rectangular enclosure, subjected to both lateral and vertical heat flux inputs. Using a validated enthalpy-porosity numerical model, four fin configurations plain— wall, square, curved, and tree-shaped were— investigated to evaluate melting time, thermal uniformity, and enthalpy gain. The inclusion of 10% GNPs increased the effective thermal conductivity from 0.15 to 0.45 W/m·K, which accelerated the melting process and improved energy storage capacity. Among all configurations, the square fin combined with GNP-PCM demonstrated the highest thermal efficiency, reducing the melting time to 4900 s (a 34.7% decrease compared to the baseline) and achieving an enthalpy gain of 7.2 × 10<sup>5</sup> J, representing a 36% increase. The square fins facilitated strong convective loops and uniform thermal gradients, while GNPs enhanced conductive heat transfer throughout the domain. Furthermore, simulations revealed that vertical heat input, while often neglected, significantly impacts system performance causing—up to a 32% delay in melting and a 28% reduction in energy storage. These findings underscore the importance of directional heating and hybrid enhancement techniques. The results provide critical insights for designing high-performance thermal management systems in renewable energy, electronic cooling, and electric vehicle battery applications.</p>\n </div>","PeriodicalId":11765,"journal":{"name":"Energy Storage","volume":"7 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage","FirstCategoryId":"1085","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/est2.70238","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Phase change material (PCM)-based thermal energy storage systems offer high energy density but are often limited by low thermal conductivity, leading to inefficient heat transfer and extended melting times. This study presents a hybrid thermal enhancement strategy combining 10% graphene nanoparticle (GNP)-doped PCM with advanced fin geometries in a fixed 5000 mm2 rectangular enclosure, subjected to both lateral and vertical heat flux inputs. Using a validated enthalpy-porosity numerical model, four fin configurations plain— wall, square, curved, and tree-shaped were— investigated to evaluate melting time, thermal uniformity, and enthalpy gain. The inclusion of 10% GNPs increased the effective thermal conductivity from 0.15 to 0.45 W/m·K, which accelerated the melting process and improved energy storage capacity. Among all configurations, the square fin combined with GNP-PCM demonstrated the highest thermal efficiency, reducing the melting time to 4900 s (a 34.7% decrease compared to the baseline) and achieving an enthalpy gain of 7.2 × 105 J, representing a 36% increase. The square fins facilitated strong convective loops and uniform thermal gradients, while GNPs enhanced conductive heat transfer throughout the domain. Furthermore, simulations revealed that vertical heat input, while often neglected, significantly impacts system performance causing—up to a 32% delay in melting and a 28% reduction in energy storage. These findings underscore the importance of directional heating and hybrid enhancement techniques. The results provide critical insights for designing high-performance thermal management systems in renewable energy, electronic cooling, and electric vehicle battery applications.

在可变热输入条件下,使用石墨烯纳米颗粒和先进翅片几何结构的PCM系统的热性能优化
相变材料(PCM)为基础的热能存储系统提供高能量密度,但往往受到低导热性的限制,导致低效的传热和延长的熔化时间。本研究提出了一种混合热增强策略,将10%的石墨烯纳米颗粒(GNP)掺杂的PCM与先进的翅片几何形状结合在一个固定的5000 mm2矩形外壳中,同时受到横向和垂直热通量输入。利用一个有效的焓孔率数值模型,研究了四种翅片构型——平壁、方形、弯曲和树形,以评估熔化时间、热均匀性和焓增益。10% GNPs的加入使材料的有效导热系数从0.15提高到0.45 W/m·K,加速了材料的熔化过程,提高了材料的储能能力。在所有配置中,方形翅片与GNP-PCM组合显示出最高的热效率,将熔化时间缩短至4900秒(与基线相比减少了34.7%),实现了7.2 × 105 J的焓增益,增加了36%。方形翅片促进了强对流循环和均匀的热梯度,而GNPs则增强了整个区域的导热传热。此外,模拟显示,垂直热输入虽然经常被忽视,但会显著影响系统性能,导致熔化延迟32%,能量储存减少28%。这些发现强调了定向加热和混合增强技术的重要性。研究结果为设计可再生能源、电子冷却和电动汽车电池应用中的高性能热管理系统提供了重要见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
2.90
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信