The Hidden Predictor of Multi-Year ENSO Predictions Revealed by Deep Learning

IF 3.4 2区 地球科学 Q1 OCEANOGRAPHY
Yipeng Chen, Xianyao Chen, Yishuai Jin, Yingying Zhao, Junyu Dong, Yanhai Gan, Hanwen Bi
{"title":"The Hidden Predictor of Multi-Year ENSO Predictions Revealed by Deep Learning","authors":"Yipeng Chen,&nbsp;Xianyao Chen,&nbsp;Yishuai Jin,&nbsp;Yingying Zhao,&nbsp;Junyu Dong,&nbsp;Yanhai Gan,&nbsp;Hanwen Bi","doi":"10.1029/2025JC022394","DOIUrl":null,"url":null,"abstract":"<p>Data-driven deep learning models (DLMs) can predict the El Niño-Southern Oscillation (ENSO) up to a year in advance, a capability that traditional physical and statistical models struggle to achieve due to the Spring Predictability Barrier (SPB). However, the specific knowledge that DLMs learn to cross the SPB in ENSO predictions remains unclear. In this study, we propose a non-parametric AI interpretability approach based on the extent to which useful predictable information can be include in data. By strategically reducing the training data sets to the key state required to maintain prediction skill, we uncover the critical knowledge learned by the DLMs and identify the tropical Pacific Ocean mode (TPOM) of Empirical Orthogonal Functions related to subsurface ocean temperature. The coupled ocean-atmosphere dynamics induced by TPOM are beneficial for enhancing ENSO prediction skill beyond 1 year. We integrate physical analysis with the flexibility of deep learning to reveal hidden dynamics, improve ENSO predictions, and demonstrate broad applicability in both climate science and AI interpretability.</p>","PeriodicalId":54340,"journal":{"name":"Journal of Geophysical Research-Oceans","volume":"130 7","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Geophysical Research-Oceans","FirstCategoryId":"89","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1029/2025JC022394","RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"OCEANOGRAPHY","Score":null,"Total":0}
引用次数: 0

Abstract

Data-driven deep learning models (DLMs) can predict the El Niño-Southern Oscillation (ENSO) up to a year in advance, a capability that traditional physical and statistical models struggle to achieve due to the Spring Predictability Barrier (SPB). However, the specific knowledge that DLMs learn to cross the SPB in ENSO predictions remains unclear. In this study, we propose a non-parametric AI interpretability approach based on the extent to which useful predictable information can be include in data. By strategically reducing the training data sets to the key state required to maintain prediction skill, we uncover the critical knowledge learned by the DLMs and identify the tropical Pacific Ocean mode (TPOM) of Empirical Orthogonal Functions related to subsurface ocean temperature. The coupled ocean-atmosphere dynamics induced by TPOM are beneficial for enhancing ENSO prediction skill beyond 1 year. We integrate physical analysis with the flexibility of deep learning to reveal hidden dynamics, improve ENSO predictions, and demonstrate broad applicability in both climate science and AI interpretability.

深度学习揭示的多年ENSO预测的隐藏预测器
数据驱动的深度学习模型(DLMs)可以提前一年预测厄尔尼诺Niño-Southern涛动(ENSO),这是传统物理和统计模型由于春季可预测性障碍(SPB)而难以实现的能力。然而,dlm在ENSO预测中学习跨越SPB的具体知识仍不清楚。在这项研究中,我们提出了一种基于有用的可预测信息可以包含在数据中的程度的非参数人工智能可解释性方法。通过有策略地将训练数据集缩减到维持预测技能所需的关键状态,我们揭示了dlm学习的关键知识,并确定了与次表层海洋温度相关的经验正交函数的热带太平洋模态(TPOM)。TPOM诱导的海-气耦合动力学有利于提高ENSO 1年以上的预测能力。我们将物理分析与深度学习的灵活性相结合,以揭示隐藏的动态,改进ENSO预测,并展示在气候科学和人工智能可解释性方面的广泛适用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Geophysical Research-Oceans
Journal of Geophysical Research-Oceans Earth and Planetary Sciences-Oceanography
CiteScore
7.00
自引率
13.90%
发文量
429
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信