Maria Alvarez Roa;Catalina Stan;Sebastian Verschoor;Idelfonso Tafur Monroy;Simon Rommel
{"title":"Decentralized key distribution versus on-demand relaying for QKD networks","authors":"Maria Alvarez Roa;Catalina Stan;Sebastian Verschoor;Idelfonso Tafur Monroy;Simon Rommel","doi":"10.1364/JOCN.547793","DOIUrl":null,"url":null,"abstract":"Quantum key distribution (QKD) allows the distribution of secret keys for quantum-secure communication between two distant parties, vital in the quantum computing era in order to protect against quantum-enabled attackers. However, overcoming rate-distance limits in QKD and the establishment of quantum key distribution networks necessitate key relaying over trusted nodes. This process may be resource-intensive, consuming a substantial share of the scarce QKD key material to establish end-to-end secret keys. Hence, an efficient scheme for key relaying and the establishment of end-to-end key pools is essential for practical and extended quantum-secured networking. In this paper, we propose and compare two protocols for managing, storing, and distributing secret key material in QKD networks, addressing challenges such as the success rate of key requests, key consumption, and overhead resulting from relaying. We present an innovative, fully decentralized key distribution strategy as an alternative to the traditional hop-by-hop relaying via trusted nodes, where three experiments are considered to evaluate performance metrics under varying key demand. Our results show that the decentralized pre-flooding approach achieves higher success rates as application demands increase. This analysis highlights the strengths of each approach in enhancing QKD network performance, offering valuable insights for developing robust key distribution strategies in different scenarios.","PeriodicalId":50103,"journal":{"name":"Journal of Optical Communications and Networking","volume":"17 8","pages":"732-742"},"PeriodicalIF":4.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Optical Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://ieeexplore.ieee.org/document/11096984/","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0
Abstract
Quantum key distribution (QKD) allows the distribution of secret keys for quantum-secure communication between two distant parties, vital in the quantum computing era in order to protect against quantum-enabled attackers. However, overcoming rate-distance limits in QKD and the establishment of quantum key distribution networks necessitate key relaying over trusted nodes. This process may be resource-intensive, consuming a substantial share of the scarce QKD key material to establish end-to-end secret keys. Hence, an efficient scheme for key relaying and the establishment of end-to-end key pools is essential for practical and extended quantum-secured networking. In this paper, we propose and compare two protocols for managing, storing, and distributing secret key material in QKD networks, addressing challenges such as the success rate of key requests, key consumption, and overhead resulting from relaying. We present an innovative, fully decentralized key distribution strategy as an alternative to the traditional hop-by-hop relaying via trusted nodes, where three experiments are considered to evaluate performance metrics under varying key demand. Our results show that the decentralized pre-flooding approach achieves higher success rates as application demands increase. This analysis highlights the strengths of each approach in enhancing QKD network performance, offering valuable insights for developing robust key distribution strategies in different scenarios.
期刊介绍:
The scope of the Journal includes advances in the state-of-the-art of optical networking science, technology, and engineering. Both theoretical contributions (including new techniques, concepts, analyses, and economic studies) and practical contributions (including optical networking experiments, prototypes, and new applications) are encouraged. Subareas of interest include the architecture and design of optical networks, optical network survivability and security, software-defined optical networking, elastic optical networks, data and control plane advances, network management related innovation, and optical access networks. Enabling technologies and their applications are suitable topics only if the results are shown to directly impact optical networking beyond simple point-to-point networks.