Performance and alkalinity control in geopolymer coral aggregate concrete via experiments and machine learning

IF 9.2 2区 工程技术 Q1 ENERGY & FUELS
Hongbin Pan , Bai Zhang , Jiji Cao , Zhiyuan Yang , Jixuan Chen , Xingkai Zhao , Hui Peng
{"title":"Performance and alkalinity control in geopolymer coral aggregate concrete via experiments and machine learning","authors":"Hongbin Pan ,&nbsp;Bai Zhang ,&nbsp;Jiji Cao ,&nbsp;Zhiyuan Yang ,&nbsp;Jixuan Chen ,&nbsp;Xingkai Zhao ,&nbsp;Hui Peng","doi":"10.1016/j.susmat.2025.e01555","DOIUrl":null,"url":null,"abstract":"<div><div>In ocean engineering, the combination of coral aggregate concrete (CAC) and fiber-reinforced polymer (FRP) composites offers potential for cost-effective, durable structures. However, the highly alkaline environment of cement-based matrices degrades FRP composites via resin hydrolysis, leading to performance deterioration of FRP-reinforced concrete structures. To address this challenge, fly ash-slag composite geopolymers were utilized to develop low-alkalinity geopolymer coral aggregate concrete (GPCAC). A systematic analysis was conducted to evaluate the effects of alkaline dosage and slag/fly ash ratio on the mechanical properties, microstructures, and pore solution alkalinity of GPCAC. The results revealed that increasing the alkali dosage from 4 % to 10 % enhanced the 28-day compressive strength by 33.64 MPa and splitting tensile strength by 2.72 MPa, whereas raising slag content from 30 % to 70 % boosted these strengths by 11.11 MPa and 0.71 MPa, respectively. At 7 days, GPCAC specimens with 10 % alkaline content exhibited a 0.47-unit higher pH value than the 4 % alkali group, and specimens with 70 % slag achieved a 0.25-unit pH increase over the 30 % slag group. However, these disparities diminished by 28 days. Notably, the pore solution pH of GPCAC measured 0.13–0.48 units lower than cement-based CAC, creating a low-alkalinity environment advantageous for mitigating FRP composite degradation. In addition, GPCAC exhibited a higher gel pore proportion than CAC, and optimizing alkali and slag content further increased gel porosity, yielding a denser matrix. An optimal pore structure was achieved with a 6 % alkali dosage and 50 % slag content, with gel pores accounting for 51.42 %, which was 2.15 times that of cement-based CAC. Ultimately, a snake optimization algorithm-enhanced random forest model accurately predicted GPCAC compressive strength with a prediction error below 5 %.</div></div>","PeriodicalId":22097,"journal":{"name":"Sustainable Materials and Technologies","volume":"45 ","pages":"Article e01555"},"PeriodicalIF":9.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Materials and Technologies","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2214993725003239","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0

Abstract

In ocean engineering, the combination of coral aggregate concrete (CAC) and fiber-reinforced polymer (FRP) composites offers potential for cost-effective, durable structures. However, the highly alkaline environment of cement-based matrices degrades FRP composites via resin hydrolysis, leading to performance deterioration of FRP-reinforced concrete structures. To address this challenge, fly ash-slag composite geopolymers were utilized to develop low-alkalinity geopolymer coral aggregate concrete (GPCAC). A systematic analysis was conducted to evaluate the effects of alkaline dosage and slag/fly ash ratio on the mechanical properties, microstructures, and pore solution alkalinity of GPCAC. The results revealed that increasing the alkali dosage from 4 % to 10 % enhanced the 28-day compressive strength by 33.64 MPa and splitting tensile strength by 2.72 MPa, whereas raising slag content from 30 % to 70 % boosted these strengths by 11.11 MPa and 0.71 MPa, respectively. At 7 days, GPCAC specimens with 10 % alkaline content exhibited a 0.47-unit higher pH value than the 4 % alkali group, and specimens with 70 % slag achieved a 0.25-unit pH increase over the 30 % slag group. However, these disparities diminished by 28 days. Notably, the pore solution pH of GPCAC measured 0.13–0.48 units lower than cement-based CAC, creating a low-alkalinity environment advantageous for mitigating FRP composite degradation. In addition, GPCAC exhibited a higher gel pore proportion than CAC, and optimizing alkali and slag content further increased gel porosity, yielding a denser matrix. An optimal pore structure was achieved with a 6 % alkali dosage and 50 % slag content, with gel pores accounting for 51.42 %, which was 2.15 times that of cement-based CAC. Ultimately, a snake optimization algorithm-enhanced random forest model accurately predicted GPCAC compressive strength with a prediction error below 5 %.

Abstract Image

通过实验和机器学习控制地聚合物珊瑚骨料混凝土的性能和碱度
在海洋工程中,珊瑚骨料混凝土(CAC)和纤维增强聚合物(FRP)复合材料的组合为经济高效、耐用的结构提供了潜力。然而,水泥基基体的高碱性环境通过树脂水解降解FRP复合材料,导致FRP增强混凝土结构性能下降。为了解决这一问题,粉煤灰-矿渣复合地聚合物被用于开发低碱度地聚合物珊瑚骨料混凝土(GPCAC)。系统分析了碱用量和渣灰比对GPCAC力学性能、微观结构和孔隙溶液碱度的影响。结果表明,碱掺量从4%增加到10%,28天抗压强度提高33.64 MPa,劈裂抗拉强度提高2.72 MPa;矿渣掺量从30%增加到70%,28天抗压强度分别提高11.11 MPa和0.71 MPa。第7天,碱性含量为10%的GPCAC试样的pH值比碱性含量为4%的GPCAC试样的pH值高0.47个单位,矿渣含量为70%的GPCAC试样的pH值比矿渣含量为30%的GPCAC试样的pH值高0.25个单位。然而,这些差异在28天内缩小了。值得注意的是,GPCAC的孔隙溶液pH值比水泥基CAC低0.13-0.48个单位,创造了有利于减缓FRP复合材料降解的低碱度环境。此外,GPCAC的凝胶孔隙比CAC高,碱和渣含量的优化进一步提高了凝胶孔隙率,得到了更致密的基质。当碱掺量为6%、矿渣掺量为50%时,凝胶孔隙占比达到51.42%,是水泥基CAC的2.15倍。最终,蛇优化算法增强的随机森林模型准确预测了GPCAC抗压强度,预测误差低于5%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Sustainable Materials and Technologies
Sustainable Materials and Technologies Energy-Renewable Energy, Sustainability and the Environment
CiteScore
13.40
自引率
4.20%
发文量
158
审稿时长
45 days
期刊介绍: Sustainable Materials and Technologies (SM&T), an international, cross-disciplinary, fully open access journal published by Elsevier, focuses on original full-length research articles and reviews. It covers applied or fundamental science of nano-, micro-, meso-, and macro-scale aspects of materials and technologies for sustainable development. SM&T gives special attention to contributions that bridge the knowledge gap between materials and system designs.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信