MVFormer: Diversifying feature normalization and token mixing for efficient vision transformers

IF 3.3 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
Jongseong Bae , Susang Kim , Minsu Cho , Ha Young Kim
{"title":"MVFormer: Diversifying feature normalization and token mixing for efficient vision transformers","authors":"Jongseong Bae ,&nbsp;Susang Kim ,&nbsp;Minsu Cho ,&nbsp;Ha Young Kim","doi":"10.1016/j.patrec.2025.07.019","DOIUrl":null,"url":null,"abstract":"<div><div>Active research is currently underway to enhance the efficiency of vision transformers (ViTs). Most studies have focused solely on token mixers, overlooking the potential relationship with normalization. To boost diverse feature learning, we propose two components: multi-view normalization (MVN) and multi-view token mixer (MVTM). The MVN integrates three differently normalized features via batch, layer, and instance normalization using a learnable weighted sum, expected to offer diverse feature distribution to the token mixer, resulting in beneficial synergy. The MVTM is a convolution-based multiscale token mixer with local, intermediate, and global filters which incorporates stage specificity by configuring various receptive fields at each stage, efficiently capturing ranges of visual patterns. By adopting both in the MetaFormer block, we propose a novel ViT, multi-vision transformer (MVFormer). Our MVFormer outperforms state-of-the-art convolution-based ViTs on image classification with the same or lower parameters and MACs. Particularly, MVFormer variants, MVFormer-T, S, and B achieve 83.4 %, 84.3 %, and 84.6 % top-1 accuracy, respectively, on ImageNet-1 K benchmark.</div></div>","PeriodicalId":54638,"journal":{"name":"Pattern Recognition Letters","volume":"197 ","pages":"Pages 72-80"},"PeriodicalIF":3.3000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pattern Recognition Letters","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0167865525002715","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

Abstract

Active research is currently underway to enhance the efficiency of vision transformers (ViTs). Most studies have focused solely on token mixers, overlooking the potential relationship with normalization. To boost diverse feature learning, we propose two components: multi-view normalization (MVN) and multi-view token mixer (MVTM). The MVN integrates three differently normalized features via batch, layer, and instance normalization using a learnable weighted sum, expected to offer diverse feature distribution to the token mixer, resulting in beneficial synergy. The MVTM is a convolution-based multiscale token mixer with local, intermediate, and global filters which incorporates stage specificity by configuring various receptive fields at each stage, efficiently capturing ranges of visual patterns. By adopting both in the MetaFormer block, we propose a novel ViT, multi-vision transformer (MVFormer). Our MVFormer outperforms state-of-the-art convolution-based ViTs on image classification with the same or lower parameters and MACs. Particularly, MVFormer variants, MVFormer-T, S, and B achieve 83.4 %, 84.3 %, and 84.6 % top-1 accuracy, respectively, on ImageNet-1 K benchmark.
MVFormer:用于高效视觉变压器的多样化特征归一化和令牌混合
目前,提高视觉变压器(ViTs)效率的研究正在积极进行。大多数研究只关注代币混合器,忽视了与规范化的潜在关系。为了促进多样化的特征学习,我们提出了两个组件:多视图归一化(MVN)和多视图令牌混合(MVTM)。MVN使用可学习的加权和,通过批处理、层和实例规范化集成了三种不同的规范化特征,期望为令牌混合器提供不同的特征分布,从而产生有益的协同作用。MVTM是一种基于卷积的多尺度令牌混频器,具有本地、中间和全局滤波器,通过在每个阶段配置各种接受域来结合阶段特异性,有效地捕获视觉模式范围。通过在MetaFormer模块中采用这两种方法,我们提出了一种新的ViT,即多视觉变压器(MVFormer)。我们的MVFormer在相同或更低参数和mac的图像分类上优于最先进的基于卷积的ViTs。特别是,MVFormer变体,MVFormer- t, S和B在imagenet - 1k基准上分别达到了83.4%,84.3%和84.6%的top-1准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Pattern Recognition Letters
Pattern Recognition Letters 工程技术-计算机:人工智能
CiteScore
12.40
自引率
5.90%
发文量
287
审稿时长
9.1 months
期刊介绍: Pattern Recognition Letters aims at rapid publication of concise articles of a broad interest in pattern recognition. Subject areas include all the current fields of interest represented by the Technical Committees of the International Association of Pattern Recognition, and other developing themes involving learning and recognition.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信