Highly efficient and stable NiFe oxide-based electrocatalysts for oxygen evolution in alkaline and saline solutions

IF 8.7 Q1 CHEMISTRY, PHYSICAL
Soumia El Boumlasy , Mariarosaria Pascale , Oreste De Luca , Tommaso Caruso , Salvatore Mirabella , Antonio Terrasi , Antonino Salvatore Aricò , Francesco Ruffino
{"title":"Highly efficient and stable NiFe oxide-based electrocatalysts for oxygen evolution in alkaline and saline solutions","authors":"Soumia El Boumlasy ,&nbsp;Mariarosaria Pascale ,&nbsp;Oreste De Luca ,&nbsp;Tommaso Caruso ,&nbsp;Salvatore Mirabella ,&nbsp;Antonio Terrasi ,&nbsp;Antonino Salvatore Aricò ,&nbsp;Francesco Ruffino","doi":"10.1016/j.apsadv.2025.100809","DOIUrl":null,"url":null,"abstract":"<div><div>Developing cost-effective and stable oxygen evolution reaction (OER) catalysts is crucial for advancing hydrogen production via water electrolysis. Given the growing scarcity of freshwater resources, seawater electrolysis offers a promising alternative. However, maintaining both high catalytic activity and long-term durability in saline environments remains a significant challenge. In this study, four catalysts, nickel oxide (NiO), two nickel-iron oxides (Ni₀.₈₅Fe₀.₁₅O and Ni₀.₆₅Fe₀.₃₅O), and iron oxide (Fe₂O₃), were synthesized using a simple chemical bath deposition method and systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). Among them, Ni₀.₈₅Fe₀.₁₅O exhibited the best OER performance, achieving a low overpotential of 348 mV at 10 mA cm⁻² and a Tafel slope of 52 mV dec⁻¹ after 24 h of operation in surrogate seawater (1 M KOH + 2.45 wt % NaCl). This superior activity is attributed to its compact nanosheet morphology and the synergistic interaction between Ni²⁺ and Fe³⁺, which induces lattice strain and increases the density of active sites, as confirmed by SEM and XPS. Electrochemical surface area (ECSA) analysis further revealed a high number of accessible and stable active sites under saline conditions, supporting the catalyst’s intrinsic activity. Ni₀.₈₅Fe₀.₁₅O demonstrates OER performance and durability comparable to state-of-the-art seawater electrolysis catalysts, underscoring its potential for scalable and sustainable hydrogen production.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"28 ","pages":"Article 100809"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Developing cost-effective and stable oxygen evolution reaction (OER) catalysts is crucial for advancing hydrogen production via water electrolysis. Given the growing scarcity of freshwater resources, seawater electrolysis offers a promising alternative. However, maintaining both high catalytic activity and long-term durability in saline environments remains a significant challenge. In this study, four catalysts, nickel oxide (NiO), two nickel-iron oxides (Ni₀.₈₅Fe₀.₁₅O and Ni₀.₆₅Fe₀.₃₅O), and iron oxide (Fe₂O₃), were synthesized using a simple chemical bath deposition method and systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). Among them, Ni₀.₈₅Fe₀.₁₅O exhibited the best OER performance, achieving a low overpotential of 348 mV at 10 mA cm⁻² and a Tafel slope of 52 mV dec⁻¹ after 24 h of operation in surrogate seawater (1 M KOH + 2.45 wt % NaCl). This superior activity is attributed to its compact nanosheet morphology and the synergistic interaction between Ni²⁺ and Fe³⁺, which induces lattice strain and increases the density of active sites, as confirmed by SEM and XPS. Electrochemical surface area (ECSA) analysis further revealed a high number of accessible and stable active sites under saline conditions, supporting the catalyst’s intrinsic activity. Ni₀.₈₅Fe₀.₁₅O demonstrates OER performance and durability comparable to state-of-the-art seawater electrolysis catalysts, underscoring its potential for scalable and sustainable hydrogen production.

Abstract Image

高效稳定的NiFe氧化物基电催化剂,用于碱性和盐水溶液中的析氧
开发经济、稳定的析氧反应(OER)催化剂是推进水电解制氢的关键。鉴于淡水资源日益稀缺,海水电解提供了一个有希望的替代方案。然而,在盐水环境中保持高催化活性和长期耐久性仍然是一个重大挑战。在本研究中,四种催化剂,氧化镍(NiO),两种镍铁氧化物(Ni 0 .₈₅Fe 0。₁₅O和Ni₀₆₅Fe₀₃₅O)和氧化铁(Fe₂O₃)使用简单的化学浴沉积法合成,并通过扫描电子显微镜(SEM), x射线衍射(XRD),紫外可见光谱和x射线光电子能谱(XPS)进行系统表征。其中,Ni₀₈₅Fe₀。₁₅O表现出最好的OER性能,在10 mA cm⁻²时达到348 mV的低过电位,在替代海水(1 M KOH + 2.45 wt % NaCl)中运行24小时后,其塔菲斜率为52 mV dec⁻¹。这种优异的活性归因于其紧凑的纳米片形貌以及Ni 2 +和Fe³+之间的协同作用,经SEM和XPS证实,Ni 2 +和Fe +产生了晶格应变,增加了活性位点的密度。电化学表面积(ECSA)分析进一步揭示了在盐水条件下大量可达且稳定的活性位点,支持催化剂的固有活性。倪₀。₈₅Fe₀。₁₅O展示了与最先进的海水电解催化剂相媲美的OER性能和耐久性,强调了其可扩展和可持续制氢的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
8.10
自引率
1.60%
发文量
128
审稿时长
66 days
期刊介绍:
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信