Soumia El Boumlasy , Mariarosaria Pascale , Oreste De Luca , Tommaso Caruso , Salvatore Mirabella , Antonio Terrasi , Antonino Salvatore Aricò , Francesco Ruffino
{"title":"Highly efficient and stable NiFe oxide-based electrocatalysts for oxygen evolution in alkaline and saline solutions","authors":"Soumia El Boumlasy , Mariarosaria Pascale , Oreste De Luca , Tommaso Caruso , Salvatore Mirabella , Antonio Terrasi , Antonino Salvatore Aricò , Francesco Ruffino","doi":"10.1016/j.apsadv.2025.100809","DOIUrl":null,"url":null,"abstract":"<div><div>Developing cost-effective and stable oxygen evolution reaction (OER) catalysts is crucial for advancing hydrogen production via water electrolysis. Given the growing scarcity of freshwater resources, seawater electrolysis offers a promising alternative. However, maintaining both high catalytic activity and long-term durability in saline environments remains a significant challenge. In this study, four catalysts, nickel oxide (NiO), two nickel-iron oxides (Ni₀.₈₅Fe₀.₁₅O and Ni₀.₆₅Fe₀.₃₅O), and iron oxide (Fe₂O₃), were synthesized using a simple chemical bath deposition method and systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). Among them, Ni₀.₈₅Fe₀.₁₅O exhibited the best OER performance, achieving a low overpotential of 348 mV at 10 mA cm⁻² and a Tafel slope of 52 mV dec⁻¹ after 24 h of operation in surrogate seawater (1 M KOH + 2.45 wt % NaCl). This superior activity is attributed to its compact nanosheet morphology and the synergistic interaction between Ni²⁺ and Fe³⁺, which induces lattice strain and increases the density of active sites, as confirmed by SEM and XPS. Electrochemical surface area (ECSA) analysis further revealed a high number of accessible and stable active sites under saline conditions, supporting the catalyst’s intrinsic activity. Ni₀.₈₅Fe₀.₁₅O demonstrates OER performance and durability comparable to state-of-the-art seawater electrolysis catalysts, underscoring its potential for scalable and sustainable hydrogen production.</div></div>","PeriodicalId":34303,"journal":{"name":"Applied Surface Science Advances","volume":"28 ","pages":"Article 100809"},"PeriodicalIF":8.7000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Surface Science Advances","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2666523925001175","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Developing cost-effective and stable oxygen evolution reaction (OER) catalysts is crucial for advancing hydrogen production via water electrolysis. Given the growing scarcity of freshwater resources, seawater electrolysis offers a promising alternative. However, maintaining both high catalytic activity and long-term durability in saline environments remains a significant challenge. In this study, four catalysts, nickel oxide (NiO), two nickel-iron oxides (Ni₀.₈₅Fe₀.₁₅O and Ni₀.₆₅Fe₀.₃₅O), and iron oxide (Fe₂O₃), were synthesized using a simple chemical bath deposition method and systematically characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), UV–visible spectroscopy, and X-ray photoelectron spectroscopy (XPS). Among them, Ni₀.₈₅Fe₀.₁₅O exhibited the best OER performance, achieving a low overpotential of 348 mV at 10 mA cm⁻² and a Tafel slope of 52 mV dec⁻¹ after 24 h of operation in surrogate seawater (1 M KOH + 2.45 wt % NaCl). This superior activity is attributed to its compact nanosheet morphology and the synergistic interaction between Ni²⁺ and Fe³⁺, which induces lattice strain and increases the density of active sites, as confirmed by SEM and XPS. Electrochemical surface area (ECSA) analysis further revealed a high number of accessible and stable active sites under saline conditions, supporting the catalyst’s intrinsic activity. Ni₀.₈₅Fe₀.₁₅O demonstrates OER performance and durability comparable to state-of-the-art seawater electrolysis catalysts, underscoring its potential for scalable and sustainable hydrogen production.