{"title":"Distributed time-varying Gaussian process regression via Kalman filtering","authors":"Nicola Taddei , Riccardo Maggioni , Jaap Eising , Giulia De Pasquale , Florian Dörfler","doi":"10.1016/j.ejcon.2025.101330","DOIUrl":null,"url":null,"abstract":"<div><div>We consider the problem of learning time-varying functions in a distributed fashion, where agents collect local information to collaboratively achieve a shared estimate. This task is particularly relevant in control applications, whenever real-time and robust estimation of dynamic cost/reward functions in safety critical settings has to be performed. In this paper, we adopt a finite-dimensional approximation of a Gaussian process, corresponding to a Bayesian linear regression in an appropriate feature space, and propose a new algorithm, DistKP, to track the time-varying coefficients via a distributed Kalman filter. The proposed method works for arbitrary kernels and under weaker assumptions on the time-evolution of the function to learn compared to the literature. We validate our results using a simulation example in which a fleet of Unmanned Aerial Vehicles (UAVs) learns a dynamically changing wind field.</div></div>","PeriodicalId":50489,"journal":{"name":"European Journal of Control","volume":"85 ","pages":"Article 101330"},"PeriodicalIF":2.6000,"publicationDate":"2025-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Control","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0947358025001591","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"AUTOMATION & CONTROL SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
We consider the problem of learning time-varying functions in a distributed fashion, where agents collect local information to collaboratively achieve a shared estimate. This task is particularly relevant in control applications, whenever real-time and robust estimation of dynamic cost/reward functions in safety critical settings has to be performed. In this paper, we adopt a finite-dimensional approximation of a Gaussian process, corresponding to a Bayesian linear regression in an appropriate feature space, and propose a new algorithm, DistKP, to track the time-varying coefficients via a distributed Kalman filter. The proposed method works for arbitrary kernels and under weaker assumptions on the time-evolution of the function to learn compared to the literature. We validate our results using a simulation example in which a fleet of Unmanned Aerial Vehicles (UAVs) learns a dynamically changing wind field.
期刊介绍:
The European Control Association (EUCA) has among its objectives to promote the development of the discipline. Apart from the European Control Conferences, the European Journal of Control is the Association''s main channel for the dissemination of important contributions in the field.
The aim of the Journal is to publish high quality papers on the theory and practice of control and systems engineering.
The scope of the Journal will be wide and cover all aspects of the discipline including methodologies, techniques and applications.
Research in control and systems engineering is necessary to develop new concepts and tools which enhance our understanding and improve our ability to design and implement high performance control systems. Submitted papers should stress the practical motivations and relevance of their results.
The design and implementation of a successful control system requires the use of a range of techniques:
Modelling
Robustness Analysis
Identification
Optimization
Control Law Design
Numerical analysis
Fault Detection, and so on.