Wangxi Duan , Xiaoqin Shen , Paolo Piersanti , Ying Liu , Mingchao Cai
{"title":"An efficient decoupling algorithm for thermoelastic dynamic system of elliptic membrane shell","authors":"Wangxi Duan , Xiaoqin Shen , Paolo Piersanti , Ying Liu , Mingchao Cai","doi":"10.1016/j.ijengsci.2025.104353","DOIUrl":null,"url":null,"abstract":"<div><div>In this study, we propose a novel computational framework for approximating the dynamics of the elliptic membrane shell model when it is coupled with thermal equations. The algorithm we propose here effectively addresses the coupling between the displacement and temperature fields, significantly reducing computational complexity. Spatial discretization is performed using the finite element method, while time discretization is based on the Newmark–Crank–Nicolson scheme. Numerical experiments are conducted on parts of elliptic and spherical shells, and the corresponding errors are analyzed for different values of the Newmark parameters and spatial steps for varying material parameters. Notably, we observe that the error convergence is influenced by the symmetry of the middle surface of the elliptic membrane under consideration.</div></div>","PeriodicalId":14053,"journal":{"name":"International Journal of Engineering Science","volume":"217 ","pages":"Article 104353"},"PeriodicalIF":5.7000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Engineering Science","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0020722525001405","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we propose a novel computational framework for approximating the dynamics of the elliptic membrane shell model when it is coupled with thermal equations. The algorithm we propose here effectively addresses the coupling between the displacement and temperature fields, significantly reducing computational complexity. Spatial discretization is performed using the finite element method, while time discretization is based on the Newmark–Crank–Nicolson scheme. Numerical experiments are conducted on parts of elliptic and spherical shells, and the corresponding errors are analyzed for different values of the Newmark parameters and spatial steps for varying material parameters. Notably, we observe that the error convergence is influenced by the symmetry of the middle surface of the elliptic membrane under consideration.
期刊介绍:
The International Journal of Engineering Science is not limited to a specific aspect of science and engineering but is instead devoted to a wide range of subfields in the engineering sciences. While it encourages a broad spectrum of contribution in the engineering sciences, its core interest lies in issues concerning material modeling and response. Articles of interdisciplinary nature are particularly welcome.
The primary goal of the new editors is to maintain high quality of publications. There will be a commitment to expediting the time taken for the publication of the papers. The articles that are sent for reviews will have names of the authors deleted with a view towards enhancing the objectivity and fairness of the review process.
Articles that are devoted to the purely mathematical aspects without a discussion of the physical implications of the results or the consideration of specific examples are discouraged. Articles concerning material science should not be limited merely to a description and recording of observations but should contain theoretical or quantitative discussion of the results.