Superior coarsening resistance and elevated-temperature mechanical stability in L12-strengthened high-entropy alloy under long-time thermal exposure

IF 7 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zhuqun Zhang , Jingyu Pang , Yitong Yang , Zhenqiang Xing , Long Zhang , Yuan Sun , Aimin Wang , Hongwei Zhang
{"title":"Superior coarsening resistance and elevated-temperature mechanical stability in L12-strengthened high-entropy alloy under long-time thermal exposure","authors":"Zhuqun Zhang ,&nbsp;Jingyu Pang ,&nbsp;Yitong Yang ,&nbsp;Zhenqiang Xing ,&nbsp;Long Zhang ,&nbsp;Yuan Sun ,&nbsp;Aimin Wang ,&nbsp;Hongwei Zhang","doi":"10.1016/j.msea.2025.148869","DOIUrl":null,"url":null,"abstract":"<div><div>The microstructural and mechanical stability of high-temperature structural materials under prolonged high-temperature exposure critically governs their in-service performance and operational reliability. In this study, we developed a novel L1<sub>2</sub>-nanoparticle-strengthened high-entropy alloy (HEA) and quantitatively investigated the evolution of its grain size, L1<sub>2</sub> precipitates, and grain boundary (GB) precipitation during isothermal aging at 750 °C. Results reveal that the developed HEA maintains exceptional microstructural stability, with limited grain size fluctuation, slow coarsening kinetics (coarsening rate constant of 1.64 × 10<sup>−29</sup> m<sup>3</sup>/s), and minimal topologically close-packed (TCP) precipitates at GBs (&lt;0.31 %) after 2000 h aging. Notably, the coarsening kinetics of L1<sub>2</sub> precipitates in this HEA are significantly lower than those of other L1<sub>2</sub>-strengthened HEAs and typical Ni-based superalloys. The superior microstructural stability of HEA ensures remarkable mechanical stability over a wide temperature range. Despite inducing trace TCP phase precipitation that reduces high-temperature elongation below 3 % after the aging time of 500 h, extended aging time restores ductility while maintaining yield strength above 700 MPa, demonstrating exceptional mechanical stability under long-time aging. This study validates HEAs' exceptional microstructure and mechanical stability at high temperatures, highlighting its potential for advanced high-temperature structural applications.</div></div>","PeriodicalId":385,"journal":{"name":"Materials Science and Engineering: A","volume":"943 ","pages":"Article 148869"},"PeriodicalIF":7.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science and Engineering: A","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0921509325010937","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The microstructural and mechanical stability of high-temperature structural materials under prolonged high-temperature exposure critically governs their in-service performance and operational reliability. In this study, we developed a novel L12-nanoparticle-strengthened high-entropy alloy (HEA) and quantitatively investigated the evolution of its grain size, L12 precipitates, and grain boundary (GB) precipitation during isothermal aging at 750 °C. Results reveal that the developed HEA maintains exceptional microstructural stability, with limited grain size fluctuation, slow coarsening kinetics (coarsening rate constant of 1.64 × 10−29 m3/s), and minimal topologically close-packed (TCP) precipitates at GBs (<0.31 %) after 2000 h aging. Notably, the coarsening kinetics of L12 precipitates in this HEA are significantly lower than those of other L12-strengthened HEAs and typical Ni-based superalloys. The superior microstructural stability of HEA ensures remarkable mechanical stability over a wide temperature range. Despite inducing trace TCP phase precipitation that reduces high-temperature elongation below 3 % after the aging time of 500 h, extended aging time restores ductility while maintaining yield strength above 700 MPa, demonstrating exceptional mechanical stability under long-time aging. This study validates HEAs' exceptional microstructure and mechanical stability at high temperatures, highlighting its potential for advanced high-temperature structural applications.
l12强化高熵合金在长时间热暴露下具有优异的抗粗化性能和高温机械稳定性
高温结构材料在长时间高温暴露下的显微组织和力学稳定性对其使用性能和使用可靠性起着至关重要的作用。在这项研究中,我们开发了一种新型的L12纳米粒子强化高熵合金(HEA),并定量研究了750℃等温时效过程中其晶粒尺寸、L12析出物和晶界(GB)析出物的演变。结果表明,HEA保持了良好的微观组织稳定性,晶粒尺寸波动有限,粗化动力学缓慢(粗化速率常数为1.64 × 10−29 m3/s),时效2000 h后,GBs处的拓扑紧密堆积(TCP)析出物最小(< 0.31%)。值得注意的是,该HEA中L12析出相的粗化动力学明显低于其他L12强化HEAs和典型ni基高温合金。HEA优越的微观结构稳定性确保了在宽温度范围内的卓越机械稳定性。尽管在500 h时效后会产生微量TCP相析出,使高温伸长率降低到3%以下,但延长时效时间可以恢复延展性,同时保持700 MPa以上的屈服强度,在长时间时效下表现出优异的机械稳定性。该研究验证了HEAs在高温下卓越的微观结构和机械稳定性,突出了其在高级高温结构应用中的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Materials Science and Engineering: A
Materials Science and Engineering: A 工程技术-材料科学:综合
CiteScore
11.50
自引率
15.60%
发文量
1811
审稿时长
31 days
期刊介绍: Materials Science and Engineering A provides an international medium for the publication of theoretical and experimental studies related to the load-bearing capacity of materials as influenced by their basic properties, processing history, microstructure and operating environment. Appropriate submissions to Materials Science and Engineering A should include scientific and/or engineering factors which affect the microstructure - strength relationships of materials and report the changes to mechanical behavior.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信