{"title":"The thickness of a graph with constraint on girth","authors":"Dengju Ma","doi":"10.1016/j.dam.2025.07.025","DOIUrl":null,"url":null,"abstract":"<div><div>The thickness of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the minimum integer <span><math><mi>t</mi></math></span> such that <span><math><mi>G</mi></math></span> can be decomposed into <span><math><mi>t</mi></math></span> planar subgraphs. In 1991, Dean et al. conjectured that the thickness of a graph <span><math><mi>G</mi></math></span> with <span><math><mi>m</mi></math></span> edges is at most <span><math><mrow><msqrt><mrow><mi>m</mi><mo>/</mo><mn>16</mn></mrow></msqrt><mo>+</mo><mi>O</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>. In this paper we show that the conjecture holds if the girth <span><math><mi>g</mi></math></span> of <span><math><mi>G</mi></math></span> is at least five, and that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo><</mo><mn>1</mn><mo>+</mo><mroot><mrow><mi>m</mi><mo>/</mo><mn>2</mn></mrow><mrow><mi>s</mi></mrow></mroot></mrow></math></span> if <span><math><mrow><mi>g</mi><mo>≥</mo><mn>6</mn></mrow></math></span>, where <span><math><mrow><mi>s</mi><mo>=</mo><mrow><mo>⌊</mo><mi>g</mi><mo>/</mo><mn>2</mn><mo>⌋</mo></mrow></mrow></math></span>. If the girth of <span><math><mi>G</mi></math></span> is not restricted, then we prove that <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌊</mo><mn>5</mn><mo>/</mo><mn>6</mn><mo>+</mo><msqrt><mrow><mn>2</mn><mi>m</mi><mo>/</mo><mn>9</mn><mo>−</mo><mn>23</mn><mo>/</mo><mn>36</mn></mrow></msqrt><mo>⌋</mo></mrow></mrow></math></span> where <span><math><mrow><mi>m</mi><mo>≥</mo><mn>3</mn></mrow></math></span>, which improves the known bound for the thickness of graphs. If <span><math><mi>G</mi></math></span> is a connected nonplanar graph with girth <span><math><mrow><mi>g</mi><mo>≥</mo><mn>6</mn></mrow></math></span> which is 2-cell embedded in the orientable surface <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>k</mi></mrow></msub></math></span> (the nonorientable surface <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>h</mi></mrow></msub></math></span>, respectively), then <span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn><mo>+</mo><mrow><mo>⌊</mo><mroot><mrow><mn>2</mn><mi>k</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mroot><mo>⌋</mo></mrow></mrow></math></span>\n (<span><math><mrow><mi>θ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>3</mn><mo>+</mo><mrow><mo>⌊</mo><mroot><mrow><mi>h</mi><mo>−</mo><mn>1</mn></mrow><mrow><mi>s</mi></mrow></mroot><mo>⌋</mo></mrow></mrow></math></span>,respectively). Clearly, if <span><math><mrow><mi>k</mi><mrow><mo>(</mo><mo>≥</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> or <span><math><mrow><mi>h</mi><mrow><mo>(</mo><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></mrow></math></span> is fixed, then the aforementioned bounds get closer and closer to 4, as the girth <span><math><mi>g</mi></math></span> is larger and larger</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"376 ","pages":"Pages 374-383"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004160","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
The thickness of a graph , denoted by , is the minimum integer such that can be decomposed into planar subgraphs. In 1991, Dean et al. conjectured that the thickness of a graph with edges is at most . In this paper we show that the conjecture holds if the girth of is at least five, and that if , where . If the girth of is not restricted, then we prove that where , which improves the known bound for the thickness of graphs. If is a connected nonplanar graph with girth which is 2-cell embedded in the orientable surface (the nonorientable surface , respectively), then
(,respectively). Clearly, if or is fixed, then the aforementioned bounds get closer and closer to 4, as the girth is larger and larger
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.