{"title":"From surface to core: Exploring bulk hydrophobicity in geopolymer tiles","authors":"Gurkan Akarken , Ugur Cengiz","doi":"10.1016/j.conbuildmat.2025.142863","DOIUrl":null,"url":null,"abstract":"<div><div>This study presents a pioneering approach to produce superhydrophobic bulk geopolymer tiles (SBGT) using a novel concurrent polymerization and cold-press technique. Unlike traditional hydrophobic coatings that degrade over time, this method achieves bulk hydrophobicity by integrating fluoroalkyl silane (FAS) modification directly into the geopolymerization process. The exothermic heat released during geopolymerization was utilized to trigger a sol-gel reaction, enabling chemical grafting of the hydrophobic agent within the geopolymer matrix. The resulting SBGT materials exhibited exceptional hydrophobic properties, with water contact angles (WCA) exceeding 150°, demonstrating complete superhydrophobicity based on both static and dynamic criteria. Self-cleaning tests confirmed the high dust-repelling capability, and liquid resistance tests demonstrated strong non-wettability against common household liquids (coffee, tea, wine, and milk). Furthermore, sandpaper abrasion and water dripping tests revealed that SBGTs maintain their hydrophobicity even under mechanical stress, highlighting their long-term durability. Additionally, mechanical strength analyses showed that while moderate FAS concentrations enhanced flexural strength, excessive amounts led to a decline due to microstructural disruptions. X-ray diffraction (XRD) and scanning electron microscopy (SEM/EDX) analyses confirmed the transformation of the geopolymer into an amorphous aluminosilicate gel, reinforcing its mechanical integrity and water resistance. This is the first study to successfully implement simultaneous concurrent polymerization and hydrophobic modification in cold press geopolymer synthesis, producing a fully hydrophobic bulk material without post-processing treatments. These findings demonstrate the commercial potential of SBGTs for self-cleaning, moisture-resistant, and energy-efficient building applications.</div></div>","PeriodicalId":288,"journal":{"name":"Construction and Building Materials","volume":"492 ","pages":"Article 142863"},"PeriodicalIF":8.0000,"publicationDate":"2025-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Construction and Building Materials","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0950061825030144","RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CONSTRUCTION & BUILDING TECHNOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
This study presents a pioneering approach to produce superhydrophobic bulk geopolymer tiles (SBGT) using a novel concurrent polymerization and cold-press technique. Unlike traditional hydrophobic coatings that degrade over time, this method achieves bulk hydrophobicity by integrating fluoroalkyl silane (FAS) modification directly into the geopolymerization process. The exothermic heat released during geopolymerization was utilized to trigger a sol-gel reaction, enabling chemical grafting of the hydrophobic agent within the geopolymer matrix. The resulting SBGT materials exhibited exceptional hydrophobic properties, with water contact angles (WCA) exceeding 150°, demonstrating complete superhydrophobicity based on both static and dynamic criteria. Self-cleaning tests confirmed the high dust-repelling capability, and liquid resistance tests demonstrated strong non-wettability against common household liquids (coffee, tea, wine, and milk). Furthermore, sandpaper abrasion and water dripping tests revealed that SBGTs maintain their hydrophobicity even under mechanical stress, highlighting their long-term durability. Additionally, mechanical strength analyses showed that while moderate FAS concentrations enhanced flexural strength, excessive amounts led to a decline due to microstructural disruptions. X-ray diffraction (XRD) and scanning electron microscopy (SEM/EDX) analyses confirmed the transformation of the geopolymer into an amorphous aluminosilicate gel, reinforcing its mechanical integrity and water resistance. This is the first study to successfully implement simultaneous concurrent polymerization and hydrophobic modification in cold press geopolymer synthesis, producing a fully hydrophobic bulk material without post-processing treatments. These findings demonstrate the commercial potential of SBGTs for self-cleaning, moisture-resistant, and energy-efficient building applications.
期刊介绍:
Construction and Building Materials offers an international platform for sharing innovative and original research and development in the realm of construction and building materials, along with their practical applications in new projects and repair practices. The journal publishes a diverse array of pioneering research and application papers, detailing laboratory investigations and, to a limited extent, numerical analyses or reports on full-scale projects. Multi-part papers are discouraged.
Additionally, Construction and Building Materials features comprehensive case studies and insightful review articles that contribute to new insights in the field. Our focus is on papers related to construction materials, excluding those on structural engineering, geotechnics, and unbound highway layers. Covered materials and technologies encompass cement, concrete reinforcement, bricks and mortars, additives, corrosion technology, ceramics, timber, steel, polymers, glass fibers, recycled materials, bamboo, rammed earth, non-conventional building materials, bituminous materials, and applications in railway materials.