Muhammad Umar , Liping Tong , Hongting Jin , Tamas Terebessy , Di Chen
{"title":"Genetics, epidemiology and management of clubfoot and related disorders","authors":"Muhammad Umar , Liping Tong , Hongting Jin , Tamas Terebessy , Di Chen","doi":"10.1016/j.gendis.2025.101690","DOIUrl":null,"url":null,"abstract":"<div><div>Clubfoot, medically termed congenital talipes equinovarus (CTEV), is a prevalent musculoskeletal birth defect, affecting approximately 0.3% of all live births. This serious congenital anomaly results from structural abnormalities in the foot and lower leg, leading to abnormal positioning of the ankle and foot joints. This review provides a comprehensive overview of the causative factors associated with CTEV and evaluates current therapeutic approaches. Although variations in genes encoding contractile proteins of skeletal myofibers have been proposed as contributors to the etiology of CTEV, no definitive candidate genes have been conclusively linked to increased risk. However, genes such as <em>TBX4</em>, <em>PITX1</em>, and members of the <em>HOXA, HOXC</em>, and <em>HOXD</em> clusters, as well as <em>NAT2</em>, have been implicated in the condition’s development, playing critical roles in limb development, muscle formation, and tissue differentiation. Also, Axin1 plays a key role in joint formation and skeletal development by inhibiting β-catenin-BMP signaling. It could significantly serve as a therapeutic target for fibular hemimelia and multiple synostoses syndrome. The exact mechanisms and the extent of their physical and genetic interactions remain subjects of ongoing research. Understanding the genetic determinants and cellular pathways involved in CTEV is crucial for unravelling the pathophysiology of this complex deformity.</div></div>","PeriodicalId":12689,"journal":{"name":"Genes & Diseases","volume":"12 6","pages":"Article 101690"},"PeriodicalIF":9.4000,"publicationDate":"2025-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Genes & Diseases","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2352304225001795","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"BIOCHEMISTRY & MOLECULAR BIOLOGY","Score":null,"Total":0}
引用次数: 0
Abstract
Clubfoot, medically termed congenital talipes equinovarus (CTEV), is a prevalent musculoskeletal birth defect, affecting approximately 0.3% of all live births. This serious congenital anomaly results from structural abnormalities in the foot and lower leg, leading to abnormal positioning of the ankle and foot joints. This review provides a comprehensive overview of the causative factors associated with CTEV and evaluates current therapeutic approaches. Although variations in genes encoding contractile proteins of skeletal myofibers have been proposed as contributors to the etiology of CTEV, no definitive candidate genes have been conclusively linked to increased risk. However, genes such as TBX4, PITX1, and members of the HOXA, HOXC, and HOXD clusters, as well as NAT2, have been implicated in the condition’s development, playing critical roles in limb development, muscle formation, and tissue differentiation. Also, Axin1 plays a key role in joint formation and skeletal development by inhibiting β-catenin-BMP signaling. It could significantly serve as a therapeutic target for fibular hemimelia and multiple synostoses syndrome. The exact mechanisms and the extent of their physical and genetic interactions remain subjects of ongoing research. Understanding the genetic determinants and cellular pathways involved in CTEV is crucial for unravelling the pathophysiology of this complex deformity.
期刊介绍:
Genes & Diseases is an international journal for molecular and translational medicine. The journal primarily focuses on publishing investigations on the molecular bases and experimental therapeutics of human diseases. Publication formats include full length research article, review article, short communication, correspondence, perspectives, commentary, views on news, and research watch.
Aims and Scopes
Genes & Diseases publishes rigorously peer-reviewed and high quality original articles and authoritative reviews that focus on the molecular bases of human diseases. Emphasis will be placed on hypothesis-driven, mechanistic studies relevant to pathogenesis and/or experimental therapeutics of human diseases. The journal has worldwide authorship, and a broad scope in basic and translational biomedical research of molecular biology, molecular genetics, and cell biology, including but not limited to cell proliferation and apoptosis, signal transduction, stem cell biology, developmental biology, gene regulation and epigenetics, cancer biology, immunity and infection, neuroscience, disease-specific animal models, gene and cell-based therapies, and regenerative medicine.