Acoustic wave behavior in rotating functionally graded piezomagnetic media with impedance boundaries

IF 4.2 2区 工程技术 Q1 MECHANICS
S. Guha , V. Gupta , M. Biswas , M. Mahanty , B.P. Sarangi , A. Haty , S. Nain
{"title":"Acoustic wave behavior in rotating functionally graded piezomagnetic media with impedance boundaries","authors":"S. Guha ,&nbsp;V. Gupta ,&nbsp;M. Biswas ,&nbsp;M. Mahanty ,&nbsp;B.P. Sarangi ,&nbsp;A. Haty ,&nbsp;S. Nain","doi":"10.1016/j.euromechsol.2025.105786","DOIUrl":null,"url":null,"abstract":"<div><div>This study examines the reflection characteristics of coupled waves in a functionally graded piezomagnetic medium, incorporating rotational dynamics and impedance boundary conditions. A comprehensive theoretical framework is developed by integrating flexomagnetic coupling, strain gradient elasticity, micro-rotational inertia, and spatial material gradation. The surface is modeled with impedance-type boundary conditions to simulate realistic interface behaviors. A secular equation governing wave motion is derived, and the reflection characteristics of five distinct coupled wave modes are analyzed in terms of energy ratios, dispersion relations, and incidence angle variations. Numerical simulations demonstrate that both rotation and impedance boundaries significantly influence the redistribution of energy among reflected waves, while functional grading enhances anisotropic responses. The presence of rotational motion alters the dynamic coupling between wave modes, and impedance boundaries introduce partial energy absorption and phase shifts, offering refined control over wave propagation. These findings are especially relevant for designing advanced sensors, actuators, and surface acoustic wave (SAW) devices in magneto-electro-elastic systems. The study contributes a novel wave reflection framework by integrating functionally graded properties, rotational effects, and boundary impedance, offering new insights into energy transfer mechanisms under complex material and boundary conditions.</div></div>","PeriodicalId":50483,"journal":{"name":"European Journal of Mechanics A-Solids","volume":"115 ","pages":"Article 105786"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Mechanics A-Solids","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0997753825002207","RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MECHANICS","Score":null,"Total":0}
引用次数: 0

Abstract

This study examines the reflection characteristics of coupled waves in a functionally graded piezomagnetic medium, incorporating rotational dynamics and impedance boundary conditions. A comprehensive theoretical framework is developed by integrating flexomagnetic coupling, strain gradient elasticity, micro-rotational inertia, and spatial material gradation. The surface is modeled with impedance-type boundary conditions to simulate realistic interface behaviors. A secular equation governing wave motion is derived, and the reflection characteristics of five distinct coupled wave modes are analyzed in terms of energy ratios, dispersion relations, and incidence angle variations. Numerical simulations demonstrate that both rotation and impedance boundaries significantly influence the redistribution of energy among reflected waves, while functional grading enhances anisotropic responses. The presence of rotational motion alters the dynamic coupling between wave modes, and impedance boundaries introduce partial energy absorption and phase shifts, offering refined control over wave propagation. These findings are especially relevant for designing advanced sensors, actuators, and surface acoustic wave (SAW) devices in magneto-electro-elastic systems. The study contributes a novel wave reflection framework by integrating functionally graded properties, rotational effects, and boundary impedance, offering new insights into energy transfer mechanisms under complex material and boundary conditions.
具有阻抗边界的旋转功能梯度压磁介质中的声波行为
结合旋转动力学和阻抗边界条件,研究了耦合波在功能梯度压磁介质中的反射特性。结合柔性磁耦合、应变梯度弹性、微转动惯量和空间材料梯度,建立了一个综合的理论框架。采用阻抗型边界条件对表面进行建模,以模拟真实的界面行为。推导了波浪运动的长期方程,并从能量比、色散关系和入射角变化等方面分析了五种不同耦合波模式的反射特性。数值模拟表明,旋转边界和阻抗边界对反射波间能量的再分布有显著影响,而功能分级增强了各向异性响应。旋转运动的存在改变了波模式之间的动态耦合,阻抗边界引入了部分能量吸收和相移,从而提供了对波传播的精细控制。这些发现对于设计磁电弹性系统中的高级传感器、致动器和表面声波(SAW)器件尤其重要。该研究通过整合功能梯度特性、旋转效应和边界阻抗,提供了一个新的波反射框架,为复杂材料和边界条件下的能量传递机制提供了新的见解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
7.00
自引率
7.30%
发文量
275
审稿时长
48 days
期刊介绍: The European Journal of Mechanics endash; A/Solids continues to publish articles in English in all areas of Solid Mechanics from the physical and mathematical basis to materials engineering, technological applications and methods of modern computational mechanics, both pure and applied research.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信