Xiaoqian Gao , Li Chen , Runkai Liu , Jing Wan , Huasong Qin , Yilun Liu
{"title":"Multiscale structure-mechanical property relationship and data-driven design of ultra-high temperature ceramics: A review","authors":"Xiaoqian Gao , Li Chen , Runkai Liu , Jing Wan , Huasong Qin , Yilun Liu","doi":"10.1016/j.eml.2025.102392","DOIUrl":null,"url":null,"abstract":"<div><div>Ultra-high temperature ceramics (UHTCs) exhibit exceptional melting points, superior oxidation resistance, and outstanding ablation performance, positioning them as indispensable materials for extreme-environment applications. However, their inherent brittleness, high density, limited elasticity, and poor fatigue resistance restrict broader implementation. This review presents a rigorous, multiscale examination of interrelationships between UHTC structural characteristics and mechanical behaviors, addressing critical knowledge gaps in failure mechanisms and state-of-the-art design of strengthening and toughening strategies. The analysis commences with crystal-chemical principles and progresses through salient microstructural and mesostructural characteristics, followed by an exploration of thermally induced deformation and structural evolution at elevated temperatures. The dominated factors in mechanical degradation and corresponding strengthening and toughening mechanisms across nanoscale, microscale, and mesoscale levels are systematically dissected. Furthermore, we highlight recent advances in high-throughput screening within materials genome engineering and the integration of machine learning (ML) for rapid property prediction and structural optimization of UHTCs. Finally, prospective multiscale design strategies are proposed to synergistically optimize the balance of strength and toughness in UHTCs.</div></div>","PeriodicalId":56247,"journal":{"name":"Extreme Mechanics Letters","volume":"79 ","pages":"Article 102392"},"PeriodicalIF":4.5000,"publicationDate":"2025-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Extreme Mechanics Letters","FirstCategoryId":"5","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S235243162500104X","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Ultra-high temperature ceramics (UHTCs) exhibit exceptional melting points, superior oxidation resistance, and outstanding ablation performance, positioning them as indispensable materials for extreme-environment applications. However, their inherent brittleness, high density, limited elasticity, and poor fatigue resistance restrict broader implementation. This review presents a rigorous, multiscale examination of interrelationships between UHTC structural characteristics and mechanical behaviors, addressing critical knowledge gaps in failure mechanisms and state-of-the-art design of strengthening and toughening strategies. The analysis commences with crystal-chemical principles and progresses through salient microstructural and mesostructural characteristics, followed by an exploration of thermally induced deformation and structural evolution at elevated temperatures. The dominated factors in mechanical degradation and corresponding strengthening and toughening mechanisms across nanoscale, microscale, and mesoscale levels are systematically dissected. Furthermore, we highlight recent advances in high-throughput screening within materials genome engineering and the integration of machine learning (ML) for rapid property prediction and structural optimization of UHTCs. Finally, prospective multiscale design strategies are proposed to synergistically optimize the balance of strength and toughness in UHTCs.
期刊介绍:
Extreme Mechanics Letters (EML) enables rapid communication of research that highlights the role of mechanics in multi-disciplinary areas across materials science, physics, chemistry, biology, medicine and engineering. Emphasis is on the impact, depth and originality of new concepts, methods and observations at the forefront of applied sciences.