Cu/Zr-doped TiO2 nanocomposite based photocatalysts for sustainable visible-light hydrogen generation

IF 4.2 Q2 CHEMISTRY, MULTIDISCIPLINARY
Abu Summama Sadavi Bilal , Gabriel Rodríguez-Ortiz , Mursaleen Shahid , Suhas Ballal , Halijah Hassan , Alisha Vashisht , Nayan Banik , Temur Eshchanov , Bekzod Madaminov , Muhammad Umair Ahsan Khan , Rida Fatima
{"title":"Cu/Zr-doped TiO2 nanocomposite based photocatalysts for sustainable visible-light hydrogen generation","authors":"Abu Summama Sadavi Bilal ,&nbsp;Gabriel Rodríguez-Ortiz ,&nbsp;Mursaleen Shahid ,&nbsp;Suhas Ballal ,&nbsp;Halijah Hassan ,&nbsp;Alisha Vashisht ,&nbsp;Nayan Banik ,&nbsp;Temur Eshchanov ,&nbsp;Bekzod Madaminov ,&nbsp;Muhammad Umair Ahsan Khan ,&nbsp;Rida Fatima","doi":"10.1016/j.rechem.2025.102561","DOIUrl":null,"url":null,"abstract":"<div><div>The photocatalytic hydrogen (H<sub>2</sub>) production under visible sunlight has gained global recognition as a viable energy source due to its renewable, clean, and sustainable approach. Bandgap engineering and surface modifications of the photocatalyst are crucial to effectively generating H<sub>2</sub> in the visible range and improving charge carrier (CC) usage. In this investigation, the simple hydrothermal method was used to develop an effective and stable Cu/Zr/TiO<sub>2</sub> (CZT) nanocomposite-based photocatalyst for hydrogen generation. The CZT nanocomposite-based photocatalyst was investigated for various structural, morphological, and optical characteristics. The XRD analysis disclosed the highly crystalline structure of the nanocomposite, while SEM images depicted an aggregation of small, roughly cubic, and irregularly shaped particles. Further, the effective electron transport was rendered by the CZT nanocomposites-based photocatalyst, which in turn facilitated the separation and movement of photogenerated charge carriers in a particular direction. The optimized CZT photocatalyst achieved an impressive H₂ production rate of 1241 μmol·g<sup>−1</sup>·h<sup>−1</sup>, significantly surpassing that of pristine TiO<sub>2</sub> nanoparticles (NPs) (561 μmol·g<sup>−1</sup>·h<sup>−1</sup>), Zr/TiO<sub>2</sub> (578 μmol·g<sup>−1</sup>·h<sup>−1</sup>), and Cu/TiO<sub>2</sub> NPs (693 μmol·g<sup>−1</sup>·h<sup>−1</sup>) by factors of 2.21, 2.15, and 1.79, respectively. Additionally, the CZT nanocomposite demonstrated exceptional stability, maintaining a consistent H<sub>2</sub> evolution rate over four consecutive photocatalytic (PC) cycles, confirming its durability. The enhanced H<sub>2</sub> evolution rate is due to synergistic characteristics of nanocomposites, including efficient electron transport, particle shape and size, oxygen vacancies, and improved visible light (VL) absorption.</div></div>","PeriodicalId":420,"journal":{"name":"Results in Chemistry","volume":"17 ","pages":"Article 102561"},"PeriodicalIF":4.2000,"publicationDate":"2025-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Results in Chemistry","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211715625005442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

The photocatalytic hydrogen (H2) production under visible sunlight has gained global recognition as a viable energy source due to its renewable, clean, and sustainable approach. Bandgap engineering and surface modifications of the photocatalyst are crucial to effectively generating H2 in the visible range and improving charge carrier (CC) usage. In this investigation, the simple hydrothermal method was used to develop an effective and stable Cu/Zr/TiO2 (CZT) nanocomposite-based photocatalyst for hydrogen generation. The CZT nanocomposite-based photocatalyst was investigated for various structural, morphological, and optical characteristics. The XRD analysis disclosed the highly crystalline structure of the nanocomposite, while SEM images depicted an aggregation of small, roughly cubic, and irregularly shaped particles. Further, the effective electron transport was rendered by the CZT nanocomposites-based photocatalyst, which in turn facilitated the separation and movement of photogenerated charge carriers in a particular direction. The optimized CZT photocatalyst achieved an impressive H₂ production rate of 1241 μmol·g−1·h−1, significantly surpassing that of pristine TiO2 nanoparticles (NPs) (561 μmol·g−1·h−1), Zr/TiO2 (578 μmol·g−1·h−1), and Cu/TiO2 NPs (693 μmol·g−1·h−1) by factors of 2.21, 2.15, and 1.79, respectively. Additionally, the CZT nanocomposite demonstrated exceptional stability, maintaining a consistent H2 evolution rate over four consecutive photocatalytic (PC) cycles, confirming its durability. The enhanced H2 evolution rate is due to synergistic characteristics of nanocomposites, including efficient electron transport, particle shape and size, oxygen vacancies, and improved visible light (VL) absorption.

Abstract Image

Cu/ zr掺杂TiO2纳米复合光催化剂可持续可见光制氢
可见光下的光催化制氢(H2)因其可再生、清洁和可持续的方法而获得了全球的认可。光催化剂的带隙工程和表面修饰对于有效地产生可见光范围内的H2和提高电荷载流子(CC)的利用率至关重要。本研究采用简单水热法制备了一种高效稳定的Cu/Zr/TiO2 (CZT)纳米复合光催化剂。研究了CZT纳米复合材料光催化剂的各种结构、形态和光学特性。XRD分析揭示了纳米复合材料的高度结晶结构,而SEM图像描绘了小的,大致立方的,不规则形状的颗粒聚集。此外,基于CZT纳米复合材料的光催化剂提供了有效的电子传递,这反过来又促进了光生载流子在特定方向上的分离和移动。优化后的CZT光催化剂的H₂产率为1241 μmol·g−1·H−1,比原始TiO2纳米粒子(561 μmol·g−1·H−1)、Zr/TiO2 (578 μmol·g−1·H−1)和Cu/TiO2 NPs (693 μmol·g−1·H−1)分别高出2.21、2.15和1.79倍。此外,CZT纳米复合材料表现出优异的稳定性,在连续四个光催化(PC)循环中保持一致的氢气析出速率,证实了其耐久性。增强的H2析出速率是由于纳米复合材料的协同特性,包括有效的电子传递、颗粒形状和尺寸、氧空位和改善的可见光吸收。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Results in Chemistry
Results in Chemistry Chemistry-Chemistry (all)
CiteScore
2.70
自引率
8.70%
发文量
380
审稿时长
56 days
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信