Non-destructive classification of ancient mural pigments by hyperspectral imaging

IF 3.5 2区 综合性期刊 0 ARCHAEOLOGY
Tingting Li , Lihong Li , Ziru Yu , Bo Ning , Yong He , Wenxiu Wan , Zhiyuan Liu , Xiangyang Yu
{"title":"Non-destructive classification of ancient mural pigments by hyperspectral imaging","authors":"Tingting Li ,&nbsp;Lihong Li ,&nbsp;Ziru Yu ,&nbsp;Bo Ning ,&nbsp;Yong He ,&nbsp;Wenxiu Wan ,&nbsp;Zhiyuan Liu ,&nbsp;Xiangyang Yu","doi":"10.1016/j.culher.2025.06.014","DOIUrl":null,"url":null,"abstract":"<div><div>Given the vulnerability and value of ancient murals, there is an urgent need to identify, restore and preserve their pigments. This study develops an image spectral fusion (ISF) method integrating hyperspectral imaging with optimized superpixel segmentation and spectral processing to achieve rapid, non-destructive pigment classification. Applied to the Yungang Grottoes murals, the Support Vector Machine model based on ISF realizes the superpixel-level classification of ancient mural pigments with an accuracy of 87 %. External validation demonstrates its excellent classification performance across diverse mural preservation states. Spectral characterization analyses reveal the potential of the method in pigment identification through spectral matching, and pigment mixtures classification. This non-destructive, contactless detection method can serve as a methodological foundation for pigment identification in murals.</div></div>","PeriodicalId":15480,"journal":{"name":"Journal of Cultural Heritage","volume":"74 ","pages":"Pages 353-362"},"PeriodicalIF":3.5000,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Cultural Heritage","FirstCategoryId":"103","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1296207425001244","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"0","JCRName":"ARCHAEOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Given the vulnerability and value of ancient murals, there is an urgent need to identify, restore and preserve their pigments. This study develops an image spectral fusion (ISF) method integrating hyperspectral imaging with optimized superpixel segmentation and spectral processing to achieve rapid, non-destructive pigment classification. Applied to the Yungang Grottoes murals, the Support Vector Machine model based on ISF realizes the superpixel-level classification of ancient mural pigments with an accuracy of 87 %. External validation demonstrates its excellent classification performance across diverse mural preservation states. Spectral characterization analyses reveal the potential of the method in pigment identification through spectral matching, and pigment mixtures classification. This non-destructive, contactless detection method can serve as a methodological foundation for pigment identification in murals.

Abstract Image

古壁画颜料的高光谱成像无损分类
鉴于古代壁画的脆弱性和价值,迫切需要对其颜料进行鉴定、修复和保护。本研究开发了一种图像光谱融合(ISF)方法,将高光谱成像与优化的超像素分割和光谱处理相结合,以实现快速、无损的颜料分类。将基于ISF的支持向量机模型应用于云冈石窟壁画,实现了古壁画颜料的超像素级分类,准确率达到87%。外部验证表明,该方法在不同的壁画保存状态下具有优异的分类性能。光谱特性分析揭示了该方法在通过光谱匹配和颜料混合物分类进行颜料鉴定方面的潜力。这种非破坏性、非接触式的检测方法可作为壁画颜料鉴定的方法学基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Cultural Heritage
Journal of Cultural Heritage 综合性期刊-材料科学:综合
CiteScore
6.80
自引率
9.70%
发文量
166
审稿时长
52 days
期刊介绍: The Journal of Cultural Heritage publishes original papers which comprise previously unpublished data and present innovative methods concerning all aspects of science and technology of cultural heritage as well as interpretation and theoretical issues related to preservation.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信