On the independence polynomial and threshold of an antiregular k-hypergraph

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Erchuan Zhang
{"title":"On the independence polynomial and threshold of an antiregular k-hypergraph","authors":"Erchuan Zhang","doi":"10.1016/j.dam.2025.07.017","DOIUrl":null,"url":null,"abstract":"<div><div>Given an integer <span><math><mrow><mi>k</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and initial <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> isolated vertices, an <em>antiregular</em> <span><math><mi>k</mi></math></span><em>-hypergraph</em> is constructed by alternatively adding an isolated vertex (connected to no other vertices) or a dominating vertex (connected to every other <span><math><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></math></span> vertices). Let <span><math><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> be the number of independent sets of cardinality <span><math><mi>i</mi></math></span> in a hypergraph <span><math><mi>H</mi></math></span>, then the <em>independence polynomial</em> of <span><math><mi>H</mi></math></span> is defined as <span><math><mrow><mi>I</mi><mrow><mo>(</mo><mi>H</mi><mo>;</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>m</mi></mrow></msubsup><msub><mrow><mi>a</mi></mrow><mrow><mi>i</mi></mrow></msub><msup><mrow><mi>x</mi></mrow><mrow><mi>i</mi></mrow></msup></mrow></math></span>, where <span><math><mi>m</mi></math></span> is the size of a maximum independent set. The main purpose of the present paper is to generalize some results of independence polynomials of antiregular graphs to the case of antiregular <span><math><mi>k</mi></math></span>-hypergraphs. In particular, we derive (semi-)closed formulas for the independence polynomials of antiregular <span><math><mi>k</mi></math></span>-hypergraphs and prove their log-concavity. Furthermore, we show that antiregular <span><math><mi>k</mi></math></span>-hypergraphs are <span><math><mrow><mi>T</mi><mn>2</mn></mrow></math></span><em>-threshold</em>, which means there exist a labeling <span><math><mi>c</mi></math></span> of the vertex set and a threshold <span><math><mi>τ</mi></math></span> such that for any vertex subset <span><math><mi>S</mi></math></span> of cardinality <span><math><mi>k</mi></math></span>, <span><math><mrow><msub><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>∈</mo><mi>S</mi></mrow></msub><mi>c</mi><mrow><mo>(</mo><mi>i</mi><mo>)</mo></mrow><mo>&gt;</mo><mi>τ</mi></mrow></math></span> if and only if <span><math><mi>S</mi></math></span> is a hyperedge.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 244-258"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004081","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Given an integer k3 and initial k1 isolated vertices, an antiregular k-hypergraph is constructed by alternatively adding an isolated vertex (connected to no other vertices) or a dominating vertex (connected to every other k1 vertices). Let ai be the number of independent sets of cardinality i in a hypergraph H, then the independence polynomial of H is defined as I(H;x)=i=0maixi, where m is the size of a maximum independent set. The main purpose of the present paper is to generalize some results of independence polynomials of antiregular graphs to the case of antiregular k-hypergraphs. In particular, we derive (semi-)closed formulas for the independence polynomials of antiregular k-hypergraphs and prove their log-concavity. Furthermore, we show that antiregular k-hypergraphs are T2-threshold, which means there exist a labeling c of the vertex set and a threshold τ such that for any vertex subset S of cardinality k, iSc(i)>τ if and only if S is a hyperedge.
反正则k超图的独立多项式和阈值
给定整数k≥3和初始k−1个孤立顶点,通过添加一个孤立顶点(不与其他顶点相连)或一个主导顶点(与其他每k−1个顶点相连)来构造反正则k-超图。设ai为超图H中基数i的独立集的个数,则H的独立多项式定义为i (H;x)=∑i=0maixi,其中m为最大独立集的大小。本文的主要目的是将反正则图的独立多项式的一些结果推广到反正则k超图的情况。特别地,我们导出了反正则k超图的独立多项式的(半)闭公式,并证明了它们的对数凹性。进一步,我们证明了反正则k-超图是t2 -阈值,这意味着存在顶点集的标记c和阈值τ,使得对于基数k的任意顶点子集S,∑i∈Sc(i)>;τ当且仅当S是超边。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信