An infinite family of normal 5-edge colorable superpositioned snarks

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Wenjuan Zhou , Rong-Xia Hao , Rong Luo , Yilun Luo
{"title":"An infinite family of normal 5-edge colorable superpositioned snarks","authors":"Wenjuan Zhou ,&nbsp;Rong-Xia Hao ,&nbsp;Rong Luo ,&nbsp;Yilun Luo","doi":"10.1016/j.dam.2025.07.032","DOIUrl":null,"url":null,"abstract":"<div><div>Let <span><math><mi>G</mi></math></span> be a cubic graph. For a proper edge coloring <span><math><mi>π</mi></math></span> of <span><math><mi>G</mi></math></span>, an edge <span><math><mrow><mi>e</mi><mo>∈</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> is normal if the number of colors of all edges incident to endvertices of <span><math><mi>e</mi></math></span> is 3 or 5. A normal <span><math><mi>k</mi></math></span>-edge coloring of <span><math><mi>G</mi></math></span> is a proper edge coloring with <span><math><mi>k</mi></math></span> colors such that each edge of <span><math><mi>G</mi></math></span> is normal. The normal chromatic index of <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest integer <span><math><mi>k</mi></math></span> such that <span><math><mi>G</mi></math></span> admits a normal <span><math><mi>k</mi></math></span>-edge coloring. Jaeger conjectured that <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>N</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>5</mn></mrow></math></span> for every bridgeless cubic graph <span><math><mi>G</mi></math></span>, and he also proved that this conjecture is equivalent to the Petersen coloring conjecture. The normal 5-edge coloring conjecture has been verified for some families of snarks, such as, generalized Blanuša snarks, Goldberg snarks, flower snarks and Loupekhine snarks. Sedlar et al. proved that this conjecture holds for two families of superpositioned snarks. In this paper, we present a construction of superpositioned snarks whose normal chromatic indices equal to 5, which implies the normal 5-edge coloring conjecture for large families of snarks.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 259-269"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004226","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

Let G be a cubic graph. For a proper edge coloring π of G, an edge eE(G) is normal if the number of colors of all edges incident to endvertices of e is 3 or 5. A normal k-edge coloring of G is a proper edge coloring with k colors such that each edge of G is normal. The normal chromatic index of G, denoted by χN(G), is the smallest integer k such that G admits a normal k-edge coloring. Jaeger conjectured that χN(G)5 for every bridgeless cubic graph G, and he also proved that this conjecture is equivalent to the Petersen coloring conjecture. The normal 5-edge coloring conjecture has been verified for some families of snarks, such as, generalized Blanuša snarks, Goldberg snarks, flower snarks and Loupekhine snarks. Sedlar et al. proved that this conjecture holds for two families of superpositioned snarks. In this paper, we present a construction of superpositioned snarks whose normal chromatic indices equal to 5, which implies the normal 5-edge coloring conjecture for large families of snarks.
一个无限族的正常的5边可着色叠加的缠结
设G是一个三次图。对于G的正当边着色π,如果与e的顶点相关的所有边的颜色数为3或5,则边e∈e (G)为正态边。G的正规k边着色是具有k种颜色的适当边着色,使得G的每条边都是正规的。G的正色指数,用χN ' (G)表示,是使G允许正k边着色的最小整数k。Jaeger猜想对于每一个无桥三次图G, χN ' (G)≤5,并证明了这个猜想等价于Petersen着色猜想。对于广义的Blanuša snarks、Goldberg snarks、flower snarks和Loupekhine snarks,我们已经验证了正常的5边着色猜想。Sedlar等人证明了这一猜想适用于两个重叠的snks族。本文给出了一个正色指数等于5的叠加结点的构造,给出了结点大族的正5边着色猜想。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信