{"title":"Intersection of cycles and paths in k-connected graphs","authors":"Haidong Wu","doi":"10.1016/j.dam.2025.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>McGuinness (2005) shows that if <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span>-connected graph <span><math><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> having circumference <span><math><mrow><mi>c</mi><mo>=</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>k</mi></mrow></math></span>, then for a pair of cycles <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></math></span>, it must be true that <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> intersect in at least two common vertices. Using this result, McGuinness proves that for any <span><math><mi>k</mi></math></span>-connected graph <span><math><mi>G</mi></math></span> where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and having circumference <span><math><mrow><mi>c</mi><mo>≥</mo><mn>2</mn><mi>k</mi></mrow></math></span>, there is a bond <span><math><mi>B</mi></math></span> which intersects every cycle of length <span><math><mrow><mi>c</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>2</mn></mrow></math></span> or greater.</div><div>In this paper, we study the following general questions: will two long cycles or two paths intersect at a large number of vertices in a highly connected graph? We give positive answers to both questions and extend McGuinness’ result. Let <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the circumference of a graph <span><math><mi>G</mi></math></span>. We prove the following results.</div><div>(1) Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-connected graph for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>13</mn><mo>.</mo><mn>9413</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. Suppose <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> are cycles of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mfrac><mrow><mi>c</mi><msqrt><mrow><mi>k</mi></mrow></msqrt></mrow><mrow><mi>s</mi></mrow></mfrac><mo>+</mo><mn>12</mn></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><mn>2</mn><msqrt><mrow><mfrac><mrow><mn>13</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></msqrt><mo>≈</mo><mn>2</mn><mo>.</mo><mn>7255</mn></mrow></math></span>. Then <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> meet in at least <span><math><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></math></span> common vertices.</div><div>(2) Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-connected graph where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2710</mn></mrow></math></span>. Suppose <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> are cycles such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>6</mn></mrow></mroot><mo>+</mo><mn>12</mn></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><mn>2</mn><msqrt><mrow><mfrac><mrow><mn>13</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></msqrt><mo>≈</mo><mn>2</mn><mo>.</mo><mn>7255</mn></mrow></math></span>. Then <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> meet in at least <span><math><mrow><mrow><mo>⌊</mo><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> common vertices.</div><div>We also prove similar results on the intersection of long paths for <span><math><mi>k</mi></math></span>-connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 226-233"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0
Abstract
McGuinness (2005) shows that if is a -connected graph having circumference , then for a pair of cycles and of such that , it must be true that and intersect in at least two common vertices. Using this result, McGuinness proves that for any -connected graph where and having circumference , there is a bond which intersects every cycle of length or greater.
In this paper, we study the following general questions: will two long cycles or two paths intersect at a large number of vertices in a highly connected graph? We give positive answers to both questions and extend McGuinness’ result. Let denote the circumference of a graph . We prove the following results.
(1) Let be a -connected graph for and . Suppose and are cycles of such that where . Then and meet in at least common vertices.
(2) Let be a -connected graph where . Suppose and are cycles such that where . Then and meet in at least common vertices.
We also prove similar results on the intersection of long paths for -connected graphs.
期刊介绍:
The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal.
Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.