Intersection of cycles and paths in k-connected graphs

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Haidong Wu
{"title":"Intersection of cycles and paths in k-connected graphs","authors":"Haidong Wu","doi":"10.1016/j.dam.2025.07.013","DOIUrl":null,"url":null,"abstract":"<div><div>McGuinness (2005) shows that if <span><math><mi>G</mi></math></span> is a <span><math><mi>k</mi></math></span>-connected graph <span><math><mrow><mo>(</mo><mi>k</mi><mo>≥</mo><mn>2</mn><mo>)</mo></mrow></math></span> having circumference <span><math><mrow><mi>c</mi><mo>=</mo><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≥</mo><mn>2</mn><mi>k</mi></mrow></math></span>, then for a pair of cycles <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mo>−</mo><mn>2</mn><mi>k</mi><mo>+</mo><mn>3</mn></mrow></math></span>, it must be true that <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> intersect in at least two common vertices. Using this result, McGuinness proves that for any <span><math><mi>k</mi></math></span>-connected graph <span><math><mi>G</mi></math></span> where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2</mn></mrow></math></span> and having circumference <span><math><mrow><mi>c</mi><mo>≥</mo><mn>2</mn><mi>k</mi></mrow></math></span>, there is a bond <span><math><mi>B</mi></math></span> which intersects every cycle of length <span><math><mrow><mi>c</mi><mo>−</mo><mi>k</mi><mo>+</mo><mn>2</mn></mrow></math></span> or greater.</div><div>In this paper, we study the following general questions: will two long cycles or two paths intersect at a large number of vertices in a highly connected graph? We give positive answers to both questions and extend McGuinness’ result. Let <span><math><mrow><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denote the circumference of a graph <span><math><mi>G</mi></math></span>. We prove the following results.</div><div>(1) Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-connected graph for <span><math><mrow><mi>s</mi><mo>≥</mo><mn>3</mn></mrow></math></span> and <span><math><mrow><mi>k</mi><mo>≥</mo><mn>13</mn><mo>.</mo><mn>9413</mn><msup><mrow><mi>s</mi></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>. Suppose <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> are cycles of <span><math><mi>G</mi></math></span> such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mfrac><mrow><mi>c</mi><msqrt><mrow><mi>k</mi></mrow></msqrt></mrow><mrow><mi>s</mi></mrow></mfrac><mo>+</mo><mn>12</mn></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><mn>2</mn><msqrt><mrow><mfrac><mrow><mn>13</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></msqrt><mo>≈</mo><mn>2</mn><mo>.</mo><mn>7255</mn></mrow></math></span>. Then <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> meet in at least <span><math><mrow><mi>s</mi><mo>+</mo><mn>1</mn></mrow></math></span> common vertices.</div><div>(2) Let <span><math><mi>G</mi></math></span> be a <span><math><mi>k</mi></math></span>-connected graph where <span><math><mrow><mi>k</mi><mo>≥</mo><mn>2710</mn></mrow></math></span>. Suppose <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> are cycles such that <span><math><mrow><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>C</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>+</mo><mrow><mo>|</mo><mi>V</mi><mrow><mo>(</mo><mi>D</mi><mo>)</mo></mrow><mo>|</mo></mrow><mo>≥</mo><mn>2</mn><mi>c</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>−</mo><mi>c</mi><mroot><mrow><mi>k</mi></mrow><mrow><mn>6</mn></mrow></mroot><mo>+</mo><mn>12</mn></mrow></math></span> where <span><math><mrow><mi>c</mi><mo>=</mo><mn>2</mn><msqrt><mrow><mfrac><mrow><mn>13</mn></mrow><mrow><mn>7</mn></mrow></mfrac></mrow></msqrt><mo>≈</mo><mn>2</mn><mo>.</mo><mn>7255</mn></mrow></math></span>. Then <span><math><mi>C</mi></math></span> and <span><math><mi>D</mi></math></span> meet in at least <span><math><mrow><mrow><mo>⌊</mo><mroot><mrow><mi>k</mi></mrow><mrow><mn>3</mn></mrow></mroot><mo>⌋</mo></mrow><mo>+</mo><mn>1</mn></mrow></math></span> common vertices.</div><div>We also prove similar results on the intersection of long paths for <span><math><mi>k</mi></math></span>-connected graphs.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 226-233"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004056","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

McGuinness (2005) shows that if G is a k-connected graph (k2) having circumference c=c(G)2k, then for a pair of cycles C and D of G such that |V(C)|+|V(D)|2c2k+3, it must be true that C and D intersect in at least two common vertices. Using this result, McGuinness proves that for any k-connected graph G where k2 and having circumference c2k, there is a bond B which intersects every cycle of length ck+2 or greater.
In this paper, we study the following general questions: will two long cycles or two paths intersect at a large number of vertices in a highly connected graph? We give positive answers to both questions and extend McGuinness’ result. Let c(G) denote the circumference of a graph G. We prove the following results.
(1) Let G be a k-connected graph for s3 and k13.9413s2. Suppose C and D are cycles of G such that |V(C)|+|V(D)|2c(G)cks+12 where c=21372.7255. Then C and D meet in at least s+1 common vertices.
(2) Let G be a k-connected graph where k2710. Suppose C and D are cycles such that |V(C)|+|V(D)|2c(G)ck6+12 where c=21372.7255. Then C and D meet in at least k3+1 common vertices.
We also prove similar results on the intersection of long paths for k-connected graphs.
k连通图中环与路径的交
McGuinness(2005)证明了如果G是一个周长c=c(G)≥2k的k连通图(k≥2),那么对于G的一对环c和D,使得|V(c)|+|V(D)|≥2c−2k+3,则c和D必定相交于至少两个公共顶点。利用这一结果,McGuinness证明了对于k≥2且周长c≥2k的任意k连通图G,存在一个键B,它与长度为c−k+2或更大的每个循环相交。在本文中,我们研究了以下一般性问题:在高连通图中,两个长周期或两条路径是否会在大量顶点处相交?我们对这两个问题都给出了肯定的答案,并推广了McGuinness的结果。设c(G)表示图G的周长。我们证明了以下结果:(1)设G是一个k连通图,且s≥3且k≥13.9413s2。假设C和D是G的环,使得|V(C)|+|V(D)|≥2c(G)−cks+12,其中C =2137≈2.7255。(2)设G为k连通图,其中k≥2710。假设C和D是这样的循环:|V(C)|+|V(D)|≥2c(G)−ck6+12,其中C =2137≈2.7255。则C与D相交于至少⌊k3⌋+1个公共顶点。我们也证明了k连通图的长路径相交的类似结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信