Signless Laplacian energy and spectral radius of a graph

IF 1 3区 数学 Q3 MATHEMATICS, APPLIED
Yuanyuan Chen , Shuting Liu , Zhiwen Wang
{"title":"Signless Laplacian energy and spectral radius of a graph","authors":"Yuanyuan Chen ,&nbsp;Shuting Liu ,&nbsp;Zhiwen Wang","doi":"10.1016/j.dam.2025.07.015","DOIUrl":null,"url":null,"abstract":"<div><div>For a graph <span><math><mi>G</mi></math></span>, the signless Laplacian energy is defined as <span><math><mrow><msup><mrow><mi>E</mi></mrow><mrow><mi>Q</mi></mrow></msup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mfenced><mrow><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>−</mo><mfrac><mrow><mn>2</mn><mi>m</mi></mrow><mrow><mi>n</mi></mrow></mfrac></mrow></mfenced></mrow></math></span>, where <span><math><mi>n</mi></math></span> and <span><math><mi>m</mi></math></span> are the order and the size, and <span><math><msub><mrow><mi>q</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> is the <span><math><mi>i</mi></math></span>th largest signless Laplacian eigenvalue of <span><math><mi>G</mi></math></span>, respectively. In this paper, we establish a sharp lower bound of the signless Laplacian spectral radius of a graph <span><math><mi>G</mi></math></span> in terms of the degree and the average 2-degree, generalizing a well-known lower bound that <span><math><mrow><msub><mrow><mi>q</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>≥</mo><mi>Δ</mi><mo>+</mo><mn>1</mn></mrow></math></span>. As applications, we give sharp lower and upper bounds of its signless Laplacian energy for a connected graph and a bipartite graph. All extremal graphs involved are characterized.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"378 ","pages":"Pages 216-225"},"PeriodicalIF":1.0000,"publicationDate":"2025-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Discrete Applied Mathematics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166218X25004044","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
引用次数: 0

Abstract

For a graph G, the signless Laplacian energy is defined as EQ(G)=i=1nqi2mn, where n and m are the order and the size, and qi is the ith largest signless Laplacian eigenvalue of G, respectively. In this paper, we establish a sharp lower bound of the signless Laplacian spectral radius of a graph G in terms of the degree and the average 2-degree, generalizing a well-known lower bound that q1Δ+1. As applications, we give sharp lower and upper bounds of its signless Laplacian energy for a connected graph and a bipartite graph. All extremal graphs involved are characterized.
图的无符号拉普拉斯能量和谱半径
对于图G,无符号拉普拉斯能量定义为EQ(G)=∑i=1nqi−2mn,其中n为阶数,m为大小,qi为G的第i大的无符号拉普拉斯特征值。本文推广了众所周知的q1≥Δ+1的下界,建立了图G的无符号拉普拉斯谱半径在度和平均2度上的尖锐下界。作为应用,我们给出了连通图和二部图的无符号拉普拉斯能量的明显下界和上界。所涉及的所有极值图都被表征。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Discrete Applied Mathematics
Discrete Applied Mathematics 数学-应用数学
CiteScore
2.30
自引率
9.10%
发文量
422
审稿时长
4.5 months
期刊介绍: The aim of Discrete Applied Mathematics is to bring together research papers in different areas of algorithmic and applicable discrete mathematics as well as applications of combinatorial mathematics to informatics and various areas of science and technology. Contributions presented to the journal can be research papers, short notes, surveys, and possibly research problems. The "Communications" section will be devoted to the fastest possible publication of recent research results that are checked and recommended for publication by a member of the Editorial Board. The journal will also publish a limited number of book announcements as well as proceedings of conferences. These proceedings will be fully refereed and adhere to the normal standards of the journal. Potential authors are advised to view the journal and the open calls-for-papers of special issues before submitting their manuscripts. Only high-quality, original work that is within the scope of the journal or the targeted special issue will be considered.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信